
IBM Enterprise Metal C for z/OS, V3.1
Version 3 Release 1

Optimization and Programming Guide

IBM

SC27-9402-00

Note

Before using this information and the product it supports, read the information in “Notices” on page
221.

This edition applies to Version 3 Release 1 of IBM® Enterprise Metal C for z/OS® (5655-MCE) and to all subsequent
releases and modifications until otherwise indicated in new editions.

Last updated: 2019-10-23
© Copyright International Business Machines Corporation 2018.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

About this document..vii
Where to find more information... vii

z/OS Basic Skills in IBM Knowledge Center... vii
Technical support.. viii
How to send your comments to IBM...viii

If you have a technical problem.. viii

Part 1. Coding: Advanced Topics.. 1

Chapter 1. z/OS 64-bit environment... 3
Differences between the ILP32 and LP64 environments... 3

ILP32 and LP64 addressing capabilities..3
ILP32 and LP64 data models and data type sizes...3

Advantages and disadvantages of the LP64 environment.. 4
LP64 application performance and program size.. 4
LP64 restrictions... 5

Migrating applications from ILP32 to LP64... 5
When to migrate applications to LP64... 5
Checklist for ILP32-to-LP64 pre-migration activities..5
Checklist for ILP32-to-LP64 post-migration activities..6

Using compiler diagnostics to ensure portability of code... 6
Using the INFO option to ensure that numbers are suffixed...6
Using the WARN64 option to identify potential portability problems...7

ILP32-to-LP64 portability issues...7
IPA(LINK) option and exploitation of 64-bit virtual memory.. 8
Potential changes in structure size and alignment.. 8
Data type assignment differences under ILP32 and LP64..12
Pointer declarations when 32-bit and 64-bit applications share header files............................. 16
Potential pointer corruption... 16
Potential loss of data in constant expressions.. 17
Data alignment problems when structures are shared... 18
Portability issues with unsuffixed numbers...19
Using a LONG_MAX macro in a sprintf subroutine.. 20

Programming for portability between ILP32 and LP64.. 20
Using header files to provide type definitions... 20
Using suffixes and explicit types to prevent unexpected behavior...21
Defining pad members to avoid data alignment problems... 21
Using prototypes to avoid debugging problems.. 22
Using a conditional compiler directive for preprocessor macro selection....................................22

Chapter 2. Reentrancy in Enterprise Metal C for z/OS..23
Natural or constructed reentrancy.. 23

Limitations of constructed reentrancy for C programs..24
Controlling external static in C programs.. 24

Controlling writable strings.. 24

Chapter 3. Using vector programming support...27
Options... 27
Macro.. 27
Vector data types... 27

 iii

Language extensions..29
Vector literals..29
Initialization of vectors... 32
typedef definitions for vector types... 32
Pointers... 33
Unary expressions.. 33
Binary expressions..35
Cast expressions...45
Compound literal expressions..45
Other extensions for vector types.. 45

Vector built-in functions...45
Header file...46
Summary of vector built-in functions...46
Arithmetic..54
Compare..72
Compare Ranges...80
Find Any Element..90
Gather and Scatter..98
Generate Mask..105
Copy until Zero..106
Load and Store..107
Logical... 111
Merge.. 116
Pack and Unpack.. 118
Replicate... 123
Rotate and Shift.. 126
Rounding and Conversion...133
Test... 138
All Predicates..140
Any Predicates..146
Defining vector built-in functions from operators... 152

Part 2. Performance optimization...153

Chapter 4. Improving program performance..155
Writing code for performance..155
ANSI aliasing rules... 155
Using ANSI aliasing rules...157
Using variables... 158
Passing function arguments.. 159
Coding expressions.. 160
Coding conversions.. 161
Arithmetical considerations...161
Using loops and control constructs... 161
Choosing a data type..162
Using #pragmas... 163

Chapter 5. Using built-in functions to improve performance...165
__builtin_expect.. 166
Platform-specific functions... 166
Examples.. 167

Chapter 6. Improving performance with compiler options..169
Using the OPTIMIZE option... 169

Optimizations performed by the compiler...169
Aggressive optimizations with OPTIMIZE(3)...170
Optimization option levels..171

iv

Processor optimization capabilities with ARCH and TUNE options..172
Inlining..173

Selectively marking code to inline... 173
Automatically choosing functions to inline..173
Modifying automatic inlining choices...173
Overriding inlining defaults.. 174
Inlining under IPA...174

Using the HOT option... 174
Using the IPA option.. 175

Types of procedural analysis..175
Compiler processing flow...176

Additional options that affect performance.. 180
AGGRCOPY... 180
ANSIALIAS..180
ASSERT(RESTRICT).. 180
COMPACT..180
COMPRESS..180
FLOAT..180
HGPR...181
LIBANSI.. 181
PREFETCH...181
RESTRICT..181
ROCONST..181
ROSTRING.. 181
STRICT.. 181
STRICT_INDUCTION.. 181
UNROLL...181
VECTOR...181

Chapter 7. Balancing compilation time and application performance.. 183
General tips.. 183
Programmer tips.. 183
System programmer tips... 184

Appendix A. Packaging considerations... 185
Compiler options... 185
Libraries... 185
Linking..185

Appendix B. Accessibility...187
Accessibility features.. 187
Consult assistive technologies..187
Keyboard navigation of the user interface..187
Dotted decimal syntax diagrams...187

Glossary.. 191
A... 191
B... 193
C... 194
D... 198
E... 201
F..202
G... 204
H... 204
I.. 205
J..207
K... 207

 v

L..207
M...208
N... 209
O... 210
P... 211
Q... 213
R... 214
S... 215
T..218
U... 219
V... 219
W.. 219

Notices..221
Programming interface information..221
Trademarks..222
Standards...222

Index.. 223

vi

About this document

This document contains reference information that is intended to help you understand the IBM Enterprise
Metal C for z/OS compiler.

Typographical conventions

The following table explains the typographical conventions used in this document.

Table 1. Typographical conventions

Typeface Indicates Example

bold Commands, executable names, compiler
options and pragma directives that
contain lower-case letters.

The metalc invocation command invokes the
Enterprise Metal C for z/OS compiler.

italics Parameters or variables whose actual
names or values are to be supplied by
the user. Italics are also used to
introduce new terms.

Make sure that you update the size parameter
if you return more than the size requested.

monospace Programming keywords and library
functions, compiler built-in functions,
file and directory names, examples of
program code, command strings, or
user-defined names.

If one or two cases of a switch statement are
typically executed much more frequently than
other cases, break out those cases by handling
them separately before the switch statement.

Softcopy documents

The Enterprise Metal C for z/OS publications are supplied in PDF format and available for download from
the Enterprise Metal C for z/OS Knowledge Center home page (www.ibm.com/support/
knowledgecenter/en/SSSHGK_3.1.0/com.ibm.metalc.v3r1.doc/welcome.html).

To read a PDF file, use the Adobe Reader. If you do not have the Adobe Reader, you can download it
(subject to Adobe license terms) from the Adobe website (www.adobe.com).

You can also browse the documents on the World Wide Web by visiting the Enterprise Metal C for z/OS
Knowledge Center home page (www.ibm.com/support/knowledgecenter/en/SSSHGK_3.1.0/
com.ibm.metalc.v3r1.doc/welcome.html).

Where to find more information
For an overview of the information associated with z/OS, see .

Additional information on Enterprise Metal C for z/OS is available on the Marketplace page for Enterprise
Metal C for z/OS (www.ibm.com/us-en/marketplace/xl-cpp-compiler-zos).

z/OS Basic Skills in IBM Knowledge Center
z/OS Basic Skills in IBM Knowledge Center is a Web-based information resource intended to help users
learn the basic concepts of z/OS, the operating system that runs most of the IBM mainframe computers in
use today. IBM Knowledge Center is designed to introduce a new generation of Information Technology
professionals to basic concepts and help them prepare for a career as a z/OS professional, such as a z/OS
system programmer.

© Copyright IBM Corp. 2018 vii

https://www.ibm.com/support/knowledgecenter/en/SSSHGK_3.1.0/com.ibm.metalc.v3r1.doc/welcome.html
https://www.ibm.com/support/knowledgecenter/en/SSSHGK_3.1.0/com.ibm.metalc.v3r1.doc/welcome.html
http://www.adobe.com
https://www.ibm.com/support/knowledgecenter/en/SSSHGK_3.1.0/com.ibm.metalc.v3r1.doc/welcome.html
https://www.ibm.com/support/knowledgecenter/en/SSSHGK_3.1.0/com.ibm.metalc.v3r1.doc/welcome.html
https://www.ibm.com/support/knowledgecenter/en/SSSHGK_3.1.0/com.ibm.metalc.v3r1.doc/welcome.html
https://www.ibm.com/us-en/marketplace/metal-c-compiler-zos
https://www.ibm.com/us-en/marketplace/metal-c-compiler-zos

Specifically, z/OS Basic Skills is intended to achieve the following objectives:

• Provide basic education and information about z/OS without charge
• Shorten the time it takes for people to become productive on the mainframe
• Make it easier for new people to learn z/OS.

z/OS Basic Skills in IBM Knowledge Center (www.ibm.com/support/knowledgecenter/zosbasics/
com.ibm.zos.zbasics/homepage.html) is available to all users (no login required).

Technical support
Additional technical support is available from the Enterprise Metal C for z/OS Support page (https://
www.ibm.com/support/home/product/A032956W76367A04/IBM_Enterprise_Metal_C_for_z/OS). This
page provides a portal with search capabilities to technical support FAQs and other support documents.

For the latest information about Enterprise Metal C for z/OS, visit Marketplace page for Enterprise Metal C
for z/OS (www.ibm.com/us-en/marketplace/xl-cpp-compiler-zos).

If you cannot find what you need, you can e-mail:

compinfo@cn.ibm.com

How to send your comments to IBM

We appreciate your input on this documentation. Please provide us with any feedback that you have,
including comments on the clarity, accuracy, or completeness of the information.

You can send an email to compinfo@cn.ibm.com and include the following information:

• Your name and address
• Your email address
• Your phone or fax number
• The publication title and order number:

Enterprise Metal C for z/OS Optimization and Programming Guide
SC27-9402-00

• The topic and page number or URL of the specific information to which your comment relates
• The text of your comment.

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute the comments
in any way appropriate without incurring any obligation to you.

IBM or any other organizations use the personal information that you supply to contact you only about the
issues that you submit.

If you have a technical problem
If you have a technical problem, take one or more of the following actions:

• Visit the IBM Support Portal (support.ibm.com).
• Contact your IBM service representative.
• Call IBM technical support.

viii IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

http://www.ibm.com/support/knowledgecenter/zosbasics/com.ibm.zos.zbasics/homepage.html
http://www.ibm.com/support/knowledgecenter/zosbasics/com.ibm.zos.zbasics/homepage.html
https://www.ibm.com/support/home/product/A032956W76367A04/IBM_Enterprise_Metal_C_for_z/OS
https://www.ibm.com/support/home/product/A032956W76367A04/IBM_Enterprise_Metal_C_for_z/OS
https://www.ibm.com/us-en/marketplace/metal-c-compiler-zos
https://www.ibm.com/us-en/marketplace/metal-c-compiler-zos
mailto:compinfo@cn.ibm.com
http://support.ibm.com

Part 1. Coding: Advanced Topics

This part contains the following coding topics:

• Chapter 1, “z/OS 64-bit environment,” on page 3
• Chapter 2, “Reentrancy in Enterprise Metal C for z/OS,” on page 23
• Chapter 3, “Using vector programming support,” on page 27

© Copyright IBM Corp. 2018 1

2 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

Chapter 1. z/OS 64-bit environment

Implementation of the 64-bit environment has not changed the default behavior of the compiler; the
default compilation environment is 32-bit, which is specified by the ILP32 compiler option.

The compiler changes the behavior of code only when compiling for the 64-bit environment, which is
specified by the LP64 compiler option.

Differences between the ILP32 and LP64 environments
The ILP32 and LP64 environments are differentiated by:

• Addressing capability
• Data model

ILP32 and LP64 addressing capabilities
Table 2 on page 3 shows the differences in addressing capabilities that are available in each
environment. 31-bit refers to the addressing mode, or AMODE. In Enterprise Metal C for z/OS, pointer
sizes in this mode are always 4 bytes. In AMODE 31, 31 bits of the pointer are used to form the address,
which is defined by the term 31-bit addressing mode. Occasionally, we also use the term 32-bit mode.
Strictly speaking, 31-bit is an architectural characteristic referring to the addressing capability, while 32-
bit is a programming language aspect referring to the data model. The latter is also referred to as ILP32
(int-long-pointer 32). When there is no ambiguity, we use the term 32-bit mode.

Table 2. Comparison of ILP32 and LP64 addressing capabilities

ILP32 (32-bit environment) LP64 (64-bit environment)

2 GB of address space 1 million TB of address space

31-bit execution mode 64-bit execution mode

ILP32 and LP64 data models and data type sizes
Table 3 on page 3 compares data models and data type sizes of ILP32 and LP64 environments.

Table 3. Comparison of ILP32 and LP64 data models

ILP32 (32-bit environment) LP64 (64-bit environment)

Data model ILP32 (32-bit pointer) Data model LP64 (64-bit pointer)

int, long, ptr, and off_t are all 32 bits (4 bytes) in
size.

int is 32 bits in size. long, ptr, and off_t are all 64
bits (8 bytes) in size.

The 32-bit data model for Enterprise Metal C for z/OS is ILP32 plus long long. This data model uses the
4/4/4 data type size model and includes a long long type. Table 4 on page 3 compares the type sizes
for the different models.

LP64 is the 64-bit data model chosen by the Aspen working group (formed by X/OPEN and a consortium
of hardware vendors). LP64 is short for long-pointer 64. It is commonly referred to as the 4/8/8 data type
size model and includes the integer/long/pointer type sizes, measured in bytes.

Table 4. ILP32 and LP64 type size comparisons for signed and unsigned data types

Data Type 32-bit sizes (in
bytes)

64-bit sizes (in
bytes)

Remarks

char 1 1

© Copyright IBM Corp. 2018 3

Table 4. ILP32 and LP64 type size comparisons for signed and unsigned data types (continued)

Data Type 32-bit sizes (in
bytes)

64-bit sizes (in
bytes)

Remarks

short 2 2

int 4 4

long 4 8

long long 8 8

float 4 4

double 8 8

long double 16 16

pointer 4 8

wchar_t 2 4 Other UNIX platforms usually have wchar_t 4
bytes for both 32-bit and 64-bit mode.

size_t 4 8 This is an unsigned type.

ptrdiff_t 4 8 This is a signed type.

Advantages and disadvantages of the LP64 environment
A major advantage of using a 64-bit environment is the increase in the virtual addressing space. A 64-bit
program can handle large tables as arrays without putting temporary files in secondary storage. LP64
provides:

• 64-bit addressing with 8-byte pointers
• Large object support (8-byte longs)
• Backward compatibility (4-byte integers)

Note: Integers are the same size under the ILP32 and LP64 data models.

LP64 application performance and program size
You can use the 64-bit address space to dramatically improve the performance of applications that
manipulate large amounts of data, whether the data is be created within the application or obtained from
files. Generally, the performance gain comes from the fact that the 64-bit application can contain the data
in its 64-bit address space (either created in data structures or mapped into memory), when it would not
have fit into a 32-bit address space. The data would need to be multiple GBs in size or larger to show this
benefit.

If the same source code is used to create a 32-bit and a 64-bit application, the 64-bit application is
typically larger than the 32-bit application. The 64-bit application is unlikely to run faster than the 32-bit
application unless it makes use of the larger 64-bit addressability. Because most C programs are pointer-
intensive, a 64-bit application can be close to twice as large as a 32–bit application, depending on how
many global pointers and longs are declared. That is why the appropriate choice is to create a 32-bit
application, unless 64-bit addressability is required by the application or can be used to dramatically
improve its performance.

Attention: Even though the address space is increased significantly, the amount of hardware
physical memory is still limited by your installation. Data that is not immediately required by the
program is subject to system paging. Programs that use large data tables therefore require a large
amount of paging space. For example, if a program requires 3 GB of address space, the system
must have 3 GB of paging space. 64-bit applications might require paging I/O tuning to
accommodate the large data handling benefit.

4 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

LP64 restrictions
The following restrictions apply under LP64:

• The ILP32 statement type=memory(hiperspace) is treated as type=memory under LP64.

Hiperspace memory files are treated as regular memory files in a 64-bit environment. All behavior is the
same as for regular memory files.

• User-supplied buffers are ignored for all but UNIX file system files under LP64.

References to user-supplied buffers are valid under ILP32 only.
• Under 64-bit data models, pointer sizes are always 64 bits.

The C Standard does not provide a mechanism for specifying mixed pointer size. However, it might be
necessary to specify the size of a pointer type to help migrate a 32-bit application (for example, when
libraries share a common header between 32-bit and 64-bit applications).

Migrating applications from ILP32 to LP64
This section describes:

• When to migrate applications to LP64
• Pre-migration checklist
• Post-migration checklist

When to migrate applications to LP64
The LP64 strategy is to strike a balance between maximizing the robustness of 64-bit capabilities while
minimizing the effort of migrating many programs.

Typically, a 32-bit application should be ported only if either of the following is true:

• It is required by a supporting utility
• It must have 64-bit addressability

This is because:

• Porting programs to a 64-bit environment presents a modest technical effort where good coding
practices are used. Poor coding practices greatly increase the programming effort.

• There is no clear performance advantage to recompiling an existing 32-bit program in 64-bit mode. In
fact, a small slowdown is possible. This is due to:

– An increase in module size because instructions are larger
– An increase in size of the writable static area (WSA) and the stack because pointers and longs are

larger
– Issues related to runtime requirements

Checklist for ILP32-to-LP64 pre-migration activities
Use the following checklist before migrating an application from ILP32 to LP64. After migration, test the
code and confirm that its behavior is the same under LP64 as it was under ILP32. If you see any
difference, debug the code and use the checklist again.

1. Search the source code for patterns that might indicate migration issues. These include:

• 0xffffffff
• 2147483647

2. Verify that all functions are properly prototyped.

Note: The C compiler assumes that an unprototyped function returns the int type. This might cause
undesirable behavior under LP64 while remaining undetectable under ILP32.

Chapter 1. z/OS 64-bit environment 5

3. Examine all types to determine whether the types should be 4-byte or 8-byte.

• For system types, the type will be the appropriate size for use with library/system calls.
• For user-defined types:

– 4-byte types should be defined based on int or unsigned int or some system type that is 4 bytes
long under LP64.

– 8-byte types should be defined based on long or unsigned long or some system type that is 8
bytes long.

4. Change all types to the chosen type.

Note: When doing so, examine all arithmetic calculations to make sure that expansion and truncation
of data values is done appropriately. Make sure that no assumption is made that pointer values fit into
integer types.

5. Use the INFO compiler option to identify the following potential problems:

• Functions not prototyped - Function prototypes allow the compiler to check for mismatched
parameters.

• Functions not prototyped - Return parameter mis-matched, especially when the code expects a
pointer. (For example, malloc and family)

• Assignment of a long or a pointer to an int - This type of assignment might cause truncation. Even
assignments with an explicit cast will be flagged.

• Assignment of an int to a pointer - If the pointer is referenced it might be invalid.

Checklist for ILP32-to-LP64 post-migration activities
After migrating a program, test the code and confirm that its behavior is the same under LP64 as it was
under ILP32. Use the following checklist to test the code. If you see any difference, debug the code and
use the pre-migration checklist again.

1. Verify that all output produced is contained in the 4-byte range.

If this is not possible, then any other application using this data needs to be ported to LP64 or, at least,
be made 8-byte-aware.

2. Verify that any user-provided process containing the wchar_t type definition did not produce
unexpected results.

UNIX wchar_t data types are typically defined as four bytes under both 32-bit and 64-bit
environments. The size difference applies to the ILP32 model, not the LP64 model. The new
environment was an opportunity to increase the size for future development. Because wchar_t is a
type definition, user-provided methods are a likely problem area. A carefully-written application
should not require changes.

Using compiler diagnostics to ensure portability of code
This section describes the following information:

• Using the INFO option to ensure that numbers are suffixed
• Using the WARN64 option to identify potential portability problems

Using the INFO option to ensure that numbers are suffixed
The INFO compiler option provides general diagnostics about program code and is not specific to
migrations from ILP32 to LP64. Before migrating, use the appropriate option to ensure that the following
items have been expunged from the code:

• Functions not prototyped - Function prototypes allow the compiler to check for mismatched
parameters.

6 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

• Functions not prototyped - Return parameter mis-matched, especially when the code expects a pointer.
(For example, malloc and family)

• Assignment of a long or a pointer to an int - This type of assignment could cause truncation. Even
assignments with an explicit cast will be flagged.

• Assignment of an int to a pointer - If the pointer is referenced it might be invalid.

Using the WARN64 option to identify potential portability problems
Under ILP32, both int and long data types are 32 bits in size. Because of this coincidence, these types
might have been used interchangeably. As shown in Table 4 on page 3, the data type long is 8 bytes in
length under LP64.

A general guideline is to review the existing use of long data types throughout the source code. If the
values to be held in such variables, fields, and parameters will fit in the range of [-231...231-1] or
[0...232-1], then it is probably best to use int or unsigned int instead. Also, review the use of the
size_t type (used in many subroutines), since its type is defined as unsigned long.

When you migrate a program from ILP32 to LP64, the data model differences might result in unexpected
behavior at execution time. Under LP64, the size of pointers and long data types are 8 bytes, which can
lead to conversion or truncation problems. The WARN64 option can be used to detect these portability
errors.

The WARN64 option provides general diagnostics about program code that might behave differently under
ILP32 and LP64. However the checking is not exhaustive. Use WARN64 to look for potential migration
problems, such as the following common problems:

• Truncation due to explicit or implicit conversion of long types into int types
• Unexpected results due to explicit or implicit conversion of int types into long types
• Invalid memory references due to explicit conversion by cast operations of pointer types into int types
• Invalid memory references due to explicit conversion by cast operations of int types into pointer types
• Problems due to explicit or implicit conversion of constants into long types
• Problems due to explicit or implicit conversion by cast operations of constants into pointer types

There are a few problems that WARN64 cannot find. For example, unions that use long data types or
pointers that work under ILP32 might not work under LP64 .

union {
 int *p; /* 32 bits / 64 bits */
 int i; /* 32 bits / 32 bits */
};

union {
 double d; /* 64 bits / 64 bits */
 long l[2]; /* 64 bits / 128 bits */
};

ILP32-to-LP64 portability issues
Before migrating applications, consider the following:

• The sizes of the long, pointer, and wchar_t types are different under LP64 than they are under ILP32.
You must check application behavior, especially if the logic depends on data size.

• Data model differences can result in unexpected behavior at execution time. Under LP64, the size of
pointers and long data type are 8 bytes long. This can lead to conversion or truncation problems.

Note: You can us the WARN64 option to help detect these portability errors. See “Using the WARN64
option to identify potential portability problems” on page 7.

Chapter 1. z/OS 64-bit environment 7

• A migration issue can exist if the program assumes that int, long, and pointer type are all the same
size. The number of cases where program logic relies on this assumption varies from application to
application, depending on the coding style and functionality of the application.

Note: Most unexpected behaviors occur at the limits of a type's value range.
• 32-bit applications that rely implicitly on internal data representations (for example, those that cast a

float pointer to an integer pointer, then manipulate the bit patterns directly and encode such knowledge
directly into the program logic) can be difficult to migrate. In this case, certain assumptions are made
about the internal structure of a float representation and the size of int.

• Code must be checked to ensure that any shifting and masking operations that manipulate long integers
still work properly with a 64-bit long.

• Input and output file dependencies are relevant when you migrate an application that is in the middle of
a pipeline of applications, where each application reads the previous application's output as input, and
then passes its output to the next application in the pipe. Before migrating one of these applications to
a 64-bit environment, you must verify that the output will not produce values outside of the 32-bit
range. Typically, once an application is ported to a 64-bit environment, all downstream applications
(that is, any application that depends on output from the ported application) must be ported to a 64-bit
environment.

• Extending functions is sometimes included as part of a migration project to exploit the benefit and to
justify the cost of migrating to a 64-bit environment. You might have to change code for using expanded
limits after extending functions.

IPA(LINK) option and exploitation of 64-bit virtual memory
IPA(LINK) makes use of 64-bit virtual memory, which will cause a compiler ABEND if there is insufficient
storage. The default MEMLIMIT system parameter size in the SMFPRMx parmlib member should be at
least 3000 MB. The default MEMLIMIT value takes effect whenever the job does not specify one of the
following:

• MEMLIMIT in the JCL JOB or EXEC statement
• REGION=0 in the JCL

Note: The MEMLIMIT value specified in an IEFUSI exit routine overrides all other MEMLIMIT settings.

The z/OS UNIX System Services ulimit command can be used to set the MEMLIMIT default. For
information, see . For additional information about the MEMLIMIT system parameter, see .

The MTCI and MTCIA cataloged procedures, which are used for IPA Link, contain the variable IMEMLIM,
which can be used to override the default MEMLIMIT value.

Potential changes in structure size and alignment
The LP64 specification changes the size and alignment of certain structure elements, which affects the
size of the structure itself. In general, all structures that use long integers and pointers must be checked
for size and alignment dependencies.

It is not possible to share a data structure between 32-bit and 64-bit processes, unless the structure is
devoid of pointer and long types. Unions that attempt to share long and int types (or overlay pointers
onto int types) will be aligned differently or will be corrupted.

Note: The issue of changing structure size and alignment should not be a problem unless the program
makes assumptions about the size and/or composition of structures.

z/OS basic rule of alignment

The basic rule of alignment in z/OS is that a data structure is aligned in accordance with its size and the
strictest alignment requirement for its largest member. An 8-byte alignment is more stringent than a 4-
byte alignment. In other words, members that can be placed on a 4-byte boundary can also be placed on
an 8-byte boundary, but not vice versa.

Note: The only exception is a long double, which is always aligned on an 8-byte boundary.

8 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

You can satisfy the rule of alignment by inserting pad members both between members and at the end of
a structure, so that the overall size of the structure is a multiple of the structure's alignment.

Examples of structure alignment differences under ILP32 and LP64

This section provides examples of three structures that illustrate the impact of the ILP32 and LP64
programming environments on structure size and alignment.

In accordance with the z/OS rule of alignment (see “z/OS basic rule of alignment” on page 8), the length
of each data member produced by the source code depends on the runtime environment, as shown in
Table 5 on page 9.

Table 5. Comparison of data structure member lengths produced from the same code

Source:

struct li{
 long la;
 int ia;
} li;

struct lii{
 long la;
 int ia;
 int ib;
} lii;

struct ili{
 int ia;
 long la;
 int ib;
} ili;

ILP32 member
lengths: length li = 8 1

length lii = 12 3
length ili = 12 3

LP64 member lengths:
length li = 16 2
length lii = 16 3
length ili = 24 3

Notes:

1. In a 32-bit environment, both int and long int have 4-byte alignments, so each of these members is
aligned on 4-byte boundary. In accordance with the z/OS rule of alignment, the structure as a whole has a
4-byte alignment. The size of struct li is 8 bytes. See Figure 1 on page 10.

2. In a 64-bit environment, int has a 4-byte alignment and long int has an 8-byte alignment. In
accordance with the z/OS rule of alignment, the structure as a whole has an 8-byte alignment. See Figure 1
on page 10.

3. The struct lii and the struct ili have the same members, but in a different member order. See
Figure 2 on page 11 and Figure 3 on page 12. Because of the padding differences in each environment:

• Under ILP32:

– The size of struct lii is 12 bytes (4-byte long + 4-byte int + 4-byte int)
– The size of struct ili is 12 bytes (4-byte int + 4-byte long + 4-byte int)

• Under LP64:

– The size of struct lii is 16 bytes (8-byte long + 4-byte int + 4-byte int)
– The size of struct ili is 24 bytes (4-byte int + 4-byte pad + 8-byte long + 4-byte int + 4-byte pad)

The ILP32 and LP64 alignments for the structs defined by the code shown in Table 5 on page 9 are
compared in Figure 1 on page 10, Figure 2 on page 11, and Figure 3 on page 12.

Chapter 1. z/OS 64-bit environment 9

Figure 1 on page 10 compares how struct li is aligned under ILP32 and LP64. The structure has two
members:

• The first (member la) is of type long
• The second (member ia) is of type int

Under ILP32, each member is 4 bytes long and is aligned on a 4-byte boundary, making the structure 8
bytes long. Under LP64, member la is 8 bytes long and is aligned on an 8-byte boundary. Member ia is 4
bytes long, so the compiler inserts 4 padding bytes to ensure that the structure is aligned to the strictest
alignment requirement for its largest member. Then, the structure can be used as part of an array under
LP64.

Figure 1. Comparison of struct li, alignments under ILP32 and LP64

Figure 2 on page 11 and Figure 3 on page 12 show structures that have the same members, but in a
different order. Compare these figures to see how the order of the members impacts the size of the
structures in each environment.

Figure 2 on page 11 compares how struct lii is aligned under ILP32 versus LP64. struct lii has
three members:

• The first (member la) is of type long
• The second (member ia) and third (member ib) are of type int

Under ILP32, each member is 4 bytes long and is aligned on a 4-byte boundary, making the structure 12
bytes long. Under LP64, member la is 8 bytes long and is aligned on an 8-byte boundary. Member ia and
member ib are each 4 bytes long, so the structure is 16 bytes long and can align on an 8-byte boundary
without padding.

10 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

Figure 2. Comparison of struct lii alignments under ILP32 and LP64

Figure 3 on page 12 compares how struct ili is aligned under ILP32 and LP64. struct ili has
three members:

• The first (member ia) is of type int
• The second (member la) is of type long
• The third (member ib) is of type int

Under ILP32, each member is 4 bytes long and is aligned on a 4-byte boundary, making the structure 12
bytes long. Under LP64, the compiler inserts padding after both member ia and member ib, so that each
member with padding is 8 bytes long (member la is already 8 bytes long) and are aligned on 8-byte
boundaries. The structure is 24 bytes long.

Chapter 1. z/OS 64-bit environment 11

Figure 3. Comparison of struct ili alignments under ILP32 and LP64

Data type assignment differences under ILP32 and LP64
Under ILP32, int, long, and pointer types have the same size and can be freely assigned to one another.

Under LP64, all pointer types are 8 bytes in size. Assigning pointers to int types and back again can
result in a invalid address, and passing pointers to a function that expects an int type will result in
truncation. For example, the following statement show an incorrect assignment.

int i;
int *p;
i = (int)p;

Note: The problem is harder to detect when casts are used. Although there is no warning message, the
problem still exists.

Avoid making any of the following assumptions:

• A pointer type or a long type can fit into an integer type.
• A type that is derived from a pointer type can fit into a type derived from an integer type.
• The number of bits in a long type object is assumed, especially when shifting bits or doing bitwise

operations.
• An integer can be passed to an unprototyped long or pointer parameter.
• A function that is not a prototype can return a pointer or long.

Portability issues with data types long and int

Under LP64, long and int data types are not interchangeable. The long type (and types derived from it)
is 64 bits in size.

You should consider all types related to the long and unsigned long types. For example, size_t,
which is used in many subroutines, is defined under LP64 as unsigned long.

Because of the difference in size for int and long under LP64, conversions to long from other integral
types might be executed differently that it was under ILP32.

12 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

Example of possible change of result after conversion from signed number to unsigned long

When a signed char, signed short, or signed int is converted to unsigned long, sign
extension might result in a different unsigned value in 64-bit mode. The example in Table 6 on page 13
will yield 4294967295 (0xffffffff) under ILP32 but 18446744073709551615 (0xffffffffffffffff) under
LP64, because of sign extension.

Table 6. Example of possible change of result after conversion from signed number to unsigned long

Source

void myfunc(int i)
{
 unsigned long l = i;

 return l;
}
void main()
{
 return myfunc(-1);
}

Compiler options
metalc -Wc,"flag(i),warn64" -c warn2.c

Output
INFORMATIONAL CJT3743 ./warn2.c:3 64-bit portability:
 possible change of result through conversion of int
 type into unsigned long int type.

Example of possible change of result after conversion from unsigned int variable to signed long

When an unsigned int variable with values greater than INT_MAX is converted to signed long, the
results depend on whether the application is executed under ILP32 or under LP64. In the example in
Table 7 on page 13:

• Under ILP32, the value INT_MAX+1 will wrap around and yield -2147483648 (0x80000000)
• Under LP64, the value INT_MAX+1 can be represented by an 8-byte signed long and will result in the

correct value 2147483648 (0x80000000)

Table 7. Example of possible change of result after conversion from unsigned int variable to signed long

Source

#include<limits.h>
void myfunc(unsigned int i)
{
 long l = i;

 return l;
}
void main()
{
 return myfunc(INT_MAX + 1);
}

Compiler options
metalc -Wc,"flag(i),warn64" -c warn3.c

Output
INFORMATIONAL CJT3743 ./warn3.c:4 64-bit portability:
 possible change of result through conversion of
 unsigned int type into long int type.

Chapter 1. z/OS 64-bit environment 13

Example of possible change of result after conversion from signed long long variable to unsigned long

When a signed long long variable with values either greater than UINT_MAX or less than 0 is
converted to unsigned long, truncation will not occur under LP64. The example in Table 8 on page 14
will yield:

• 4294967295 (0xffffffff) 0 (0x0) under ILP32
• 18446744073709551615 (0xffffffffffffffff) 4294967296 (0x100000000) under LP64

Table 8. Example of possible change of result after conversion from signed long long variable to unsigned long

Source

#include<limits.h>
void myfunc(signed long long ll)
{
 unsigned long l = ll;

 return l;
}
void main()
{
 return myfunc(-1) + myfunc(UINT_MA X+ 1ll);
}

Compiler options
metalc -Wc,"flag(i),warn64" -c warn4.c

Output
INFORMATIONAL CJT3743 ./warn4.c:4 64-bit portability:
 possible change of result through conversion of long
 long int type into unsigned long int type.

Example of possible change of result after conversion from unsigned long long variable to unsigned long

Under LP64, when an unsigned long long variable with values greater than UINT_MAX is converted to
unsigned long, truncation will not occur.

Table 9. Example of possible change of result after conversion from unsigned long long variable to unsigned long

Source

#include<limits.h>
void myfunc(unsigned long long ll)
{
 unsigned long l = ll;

 return l;
}
void main()
{
 return myfunc(UINT_MAX + 1ull);
}

ILP32 output Return value: 0 (0x0)

Note: The higher order word is truncated.

LP64 output Return value: 4294967296 (0x100000000)

Note: There is no truncation.

Example of possible change of result after conversion from signed long long variable to signed long

Under LP64, when a signed long long variable with values less than INT_MIN or greater than
INT_MAX is converted to signed long, truncation does not occur.

14 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

Table 10.

Source
#include<limits.h>
void myfunc(signed long long ll)
{
 signed long l = ll;

 return l;
}

void main()
{
 myfunc(INT_MIN - 1ll);
}

void main()
{
 myfunc(INT_MAX + 1ll);
}

Compiler options
metalc -Wc,"flag(i),warn64" -c warn5.c

ILP32 output
INFORMATIONAL CJT3743 ./warn5.c:4 64-bit portability:
 possible change of result through conversion of long
 long int type into long int type.

Return value: -2147483649
(0xffffffff7fffffff)

Return value: 2147483648
(0x80000000)

Note: The higher order word is truncated.

LP64 output INFORMATIONAL CJT3743 ./warn5.c:4 64-bit portability:
 possible change of result through conversion of long
 long int type into long int type.

Return value: -2147483649
(0xffffffff7fffffff)

Return value: 2147483648
(0x80000000)

Note: There is no truncation.

Example of possible change of result after conversion from unsigned long long variable to signed long

Under LP64, when an usigned long long variable with values greater than INT_MAX is converted to
signed long, truncation does not occur.

Table 11. Example of possible change of result after conversion from unsigned long long variable to signed long

Source

#include<limits.h>
void myfunc(unsigned long long ll)
{
 signed long l = ll;

 return l;
}
void main()
{
 return myfunc(INT_MAX + 1ull);
}

Compiler options
metalc -Wc,"flag(i),warn64" -c warn6.c

Chapter 1. z/OS 64-bit environment 15

Table 11. Example of possible change of result after conversion from unsigned long long variable to signed long
(continued)

ILP32 output
INFORMATIONAL CJT3743 ./warn6.c:4 64-bit portability: possible
 change of result through conversion of unsigned long long
 int type into long int type.

Return value: -2147483648 (0x80000000)

Note: The value INT_MAX+1ull will wrap around.

LP64 output
INFORMATIONAL CJT3743 ./warn6.c:4 64-bit portability: possible
 change of result through conversion of unsigned long long
 int type into long int type.

Return value: 2147483648 (0x80000000)

Note: The value INT_MAX+1ull can be represented by an 8-byte signed long and will
result in the correct value.

Pointer declarations when 32-bit and 64-bit applications share header files
In 64-bit data models, pointer sizes are always 64 bits. There is no standard language syntax for
specifying mixed pointer size. However, it might be necessary to specify the size of a pointer type to help
migrate a 32-bit application (for example, when libraries share a common header between 32-bit and 64-
bit applications).

The Enterprise Metal C for z/OS compiler reserves two pointer size qualifiers:

• __ptr32
• __ptr64

The size qualifier __ptr64 is not currently used; it is reserved so that a program cannot use it. The size
qualifier __ptr32 declares a pointer to be 32 bits in size. This is ignored under ILP32.

Examples of pointer declarations that can be made under LP64:

int * __ptr32 p; /* 32-bit pointer */ 1 , 3
int * r; /* 64-bit pointer, default to the model's size */ 4
int * __ptr32 const q; /* 32-bit const pointer */ 1 , 2 , 3

Notes:

1. The qualifier qualifies the * before it.
2. q is a 32-bit constant pointer to an integer.
3. When __ptr32 is used, the program expects that the address of the pointer variable is less than or

equal to 31 bits.
4. If a pointer declaration does not have the size qualifier, it defaults to the size of the data model.

Potential pointer corruption
When porting a program from ILP32 to LP64, be aware of the following potential problems:

• An invalid address might be the result of either of the following actions:

– Assigning an integer (4 bytes) or a 4-byte hexadecimal constant to a pointer type variable (8 bytes)
– Casting a pointer to an integer type

Note: An invalid address causes errors when the pointer is dereferenced.
• If you compare an integer to a pointer, you might get unexpected results.
• Data truncation might result if you convert pointers to signed or unsigned integers with the expectation

that the pointer value will be preserved.

16 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

• If return values of functions that return pointers are assigned to an integer type, those return values will
be truncated.

• If code assumes that pointers and integers are the same size (in an arithmetic context), there will be
problems. Pointer arithmetic is often a source of problems when migrating code. The ISO C standard
dictates that incrementing a pointer adds the size of the data type to which it points to the pointer
value. For example, if the variable p is a pointer to long, the operation (p+1) increments the value of p
by 4 bytes (in 32-bit mode) or by 8 bytes (in 64-bit mode). Therefore, casts between long* and int*
are problematic because of the size differences between pointer objects (32 bits versus 64 bits).

Potentially incorrect pointer-to-int and int-to-pointer conversions

Before porting code, It is important to test the ILP32 code to determine if any code paths would have
incorrect results under LP64. For example:

• When a pointer is explicitly converted to an integer, truncation of the high-order word occurs.
• When an integer is explicitly converted to a pointer, the pointer might not be correct, which could result

in invalid memory access when the pointer is dereferenced.

Potential truncation problem with a pointer cast conversion

As Table 12 on page 17 shows, truncation problems can occur when converting between 64-bit and 32-
bit data objects. Because int and long are both 32 bits under ILP32, a mixed assignment or conversion
between these data types did not represent any problem. However, under LP64, a mixed assignment or
conversion does present problems because long is larger in size than int. Without an explicit cast, the
compiler is unable to determine whether the narrowing of assignment is intended. If the value l is always
within the range representable by an int, or if the truncation is intended by design, use an explicit cast to
silent the WARN64 message that you will receive for this code.

Table 12. Example of truncation problem with a pointer cast conversion

Source
void myfunc(long l)
 {
 int i = l;
 }

Compiler options
metalc -Wc,"flag(i),warn64" -c warn1.c

Output
WARNING CJT3742 ./warn1.c:3 64-bit portability:
 possible loss of digits through conversion of long
 int type into int type.

Potential loss of data in constant expressions
A loss of data can occur in some constant expressions because of lack of precision. These types of
problems are very hard to find and might be unnoticed. It is possible to write data-neutral code that can
be compiled under both ILP32 and LP64.

When coding constant expressions, you must be very explicit about specifying types and use the constant
suffixes (u, U, l, L, ll, LL) to specify types, as shown in Table 13 on page 18. You could also use casts to
specify the type of a constant expression.

It is especially important to code constant expressions carefully when you are porting programs to a 64-
bit environment because integer constants might have different types when compiled in 64-bit mode. The
ISO C standard states that the type of an integer constant, depending on its format and suffix, is the first
(that is, smallest) type in the corresponding list that will hold the value. The number of leading zeros does
not influence the type selection. Table 13 on page 18 describes the type of an integer constant
according to the ISO standards.

Chapter 1. z/OS 64-bit environment 17

Table 13. Type of an integer constant

Suffix Decimal constant Octal or hexadecimal constant

unsuffixed
int
long
unsigned long

int
unsigned int
long
unsigned long

u or U
unsigned int
unsigned long

unsigned int
unsigned long

l or L
long
unsigned long

long
unsigned long

Both u or U and l or L unsigned long unsigned long

ll or LL long long
long long
unsigned long long

Both u or U and ll or LL unsigned long long unsigned long long

Note: Under LP64, a change in the type of a constant in an expression might cause unexpected results
because long is equal to long long. For example, an unsuffixed hexadecimal constant that can be
represented only by an unsigned long in 32-bit mode can fit within a long in 64-bit mode.

Data alignment problems when structures are shared
Modern processor designs usually require data in memory to be aligned to their natural boundaries, in
order to gain the best possible performance. In most cases, the compiler ensures proper alignment by
inserting padding bytes immediately in front of the misaligned data. Although the padding bytes do not
affect the integrity of the data, they might result in an unexpected layout, which affects the size of
structures and unions.

Because both pointer size and long size are doubled in 64-bit mode, structures and unions containing
them as members are larger than they are in 32-bit mode.

Figure 4 on page 19 illustrates how the compiler treats the source code shown in #unique_45/
unique_45_Connect_42_codeshareptrs under ILP32 and LP64. Because the pointer is a different size in
each environment, they are aligned on different boundaries. This means that if the code is compiled under
both ILP32 and LP64, there are likely to be alignment problems. Figure 5 on page 22 illustrates the
solution, which is to define pad members of type character that prevent the possibility of data
misalignment. Table 15 on page 21 shows the necessary modifications to the code in #unique_45/
unique_45_Connect_42_codeshareptrs.

If the structure in #unique_45/unique_45_Connect_42_codeshareptrs is shared or exchanged among
32-bit and 64-bit processes, the data fields (and padding) of one environment will not match the
expectations of the other, as shown in Figure 4 on page 19.

18 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

Figure 4. Example of potential alignment problems when a struct is shared or exchanged among 32-bit and 64-bit
processes

Portability issues with unsuffixed numbers
When porting code, be aware that:

• Unsuffixed constants are more likely to become 8 bytes long if they are in hexadecimal.
• All constants that can impact any constant assignment must be explicitly suffixed.

Example of unexpected behavior resulting from use of unsuffixed numbers

This causes some operations, such as one that compares sizeof(4294967295) to another value, to
return 8. If you add the suffix U to the number (4294967295U), the compiler can parse it as unsigned
int.

Table 14. Example of unexpected behavior resulting from use of unsuffixed numbers

Source

#include <limits.h>
void main(void) {
 long l = LONG_MAX;

}

Under ILP32
size(2147483647) = 4
size(2147483648) = 4
size(4294967295U) = 4
size(-1) = 4
size(-1L) = 4
LONG_MAX = 2147483647

Chapter 1. z/OS 64-bit environment 19

Table 14. Example of unexpected behavior resulting from use of unsuffixed numbers (continued)

Under LP64
size(2147483647) = 4
size(2147483648) = 8
size(4294967295U) = 4
size(-1) = 4
size(-1L) = 8
LONG_MAX = -1

Example of how a suffix causes the compiler to parse the number differently under ILP32 than under
LP64

Example: A number like 4294967295 (UINT_MAX), when parsed by the compiler, will be

• An unsigned long under ILP32
• A signed long under LP64

Using a LONG_MAX macro in a sprintf subroutine
The sprintf subroutine format string for a 64-bit integer is different than the string used for a 32-bit
integer. Programs that do these conversions must use the proper format specifier.

Under LP64, you must also consider the maximum number of digits of the long and unsigned long
types. The ULONG_MAX is twenty digits long, and the LONG_MAX is nineteen digits.

Programming for portability between ILP32 and LP64
When you want to program for portability between the ILP32 and LP64 environments, you can use the
following strategies:

• Header files to provide type definitions
• Suffixes and explicit types to prevent unexpected behavior
• Defining pad members to avoid data alignment problems
• Prototypes to avoid debugging problems
• Conditional compiler directive for preprocessor macro selection

Using header files to provide type definitions
The header file inttypes.h provides type definitions for integer types that are guaranteed to have a
specific size (for example, int32_t and int64_t, and their unsigned variations). Consider using those
type definitions if your program code relies on types with specific sizes.

There are many ways to use headers to handle code that is portable between ILP32 and LP64. You can
minimize the amount of conditional compilation code and avoid having totally different sections of code
for a ILP32 and LP64 structure definitions if you adopt a coding convention that suits your environment.

If you provide a library to your application users and ship header files that define the application
programming interface of the library, consider shipping a single set of headers that can support both 32-
bit and 64-bit versions of your library. You can use the type definitions in inttypes.h. For example, if
you are currently shipping 32-bit versions of your header files, you could:

• Replace all fields of type long with type int32_t (or another 32-bit type)
• Similarly replace all fields for the unsigned variation
• If you cannot let a 64-bit application use a 64-bit pointer for a field, use the __ptr32 qualifier.

20 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

Using suffixes and explicit types to prevent unexpected behavior
The C language limit (in limits.h) is different under LP64 than it is under ILP32. As the following
example shows, you can prevent unexpected behavior by an application by using suffixes and explicit
types with all numbers.

#ifdef _LP64
#define LONG_MAX (9223372036854775807L)
#define LONG_MIN (-LONG_MAX - 1)
#define ULONG_MAX (18446744073709551615U)
#else
#define LONG_MAX INT_MAX
#define LONG_MIN INT_MIN
#define ULONG_MAX (UINT_MAX)
#endif /* _LP64 */

Note: The output for LONG_MAX is not really -1. The reason for the -1 is that:

• The sprintf subroutine handles it as an integer
• (LONG_MAX == (int)LONG_MAX) returns a negative value

Defining pad members to avoid data alignment problems
If you want to allow the structure to be shared, you might be able to reorder the fields in the data
structure to get the alignments in both 32-bit and 64-bit environments to match (as shown in Table 5 on
page 9), depending on the data types used in the structure and the way in which the structure as a whole
is used (for example, whether the structure is used as a member of another structure or as an array).

If you are unable to reorder the members of a structure, or if reordering alone cannot provide correct
alignment, you can define paddings that force the members of the structure to fall on their natural
boundaries regardless of whether it is compiled under ILP32 or LP64. A conditional compilation section is
required whenever a structure uses data types that have different sizes in 32-bit and 64-bit
environments.

The example in Table 15 on page 21 shows how the source code in #unique_45/
unique_45_Connect_42_codeshareptrs can be modified to avoid the data alignment problem.

Table 15. Example of source code that successfully shares pointers between ILP32 and LP64 programs

Source:
struct T {
 char c;
 short s;
 #if !defined(_LP64)
 char pad1[4];
 #endif
 int *p;
 #if !defined(_LP64)
 char pad2[4];
 #endif
} t

ILP32/ LP64 size and member layout:
sizeof(t) = 16
offsetof(t, c) = 0 sizeof(c) = 1
offsetof(t, s) = 2 sizeof(s) = 2
offsetof(t, p) = 8 sizeof(p) = 4

Figure 5 on page 22 shows the member layout of the structure with user-defined padding. Because the
pointer is a different size in each environment, it is aligned on different a boundary in each environment.
This means that if the code is compiled under both ILP32 and LP64, there are likely to be alignment
problems. This figure illustrates the solution, which is to define pad members of type character that
prevent the possibility of data misalignment.

Chapter 1. z/OS 64-bit environment 21

Note: When inserting paddings into structures, use an array of characters. The natural alignment of a
character is 1-byte, which means that it can reside anywhere in memory.

Figure 5. Example of user-defined data padding for a structure that is shared or exchanged among 32-bit and 64-
bit processes

Using prototypes to avoid debugging problems
You can avoid complex debugging problems by ensuring that all functions are prototyped.

The C language provides a default prototype. If a function is not prototyped, it defaults to a function which
returns an integer and has no information about the parameters.

A problem is that the default return type of int might not remain the same size as an associated pointer.
For example, the function malloc() can cause truncation when an unprototyped function returns a
pointer. This is because an unprototyped function is assumed to return an int (4 bytes).

Using a conditional compiler directive for preprocessor macro selection
When the compiler is invoked with the LP64 option, the preprocessor macro _LP64 is defined. When the
compiler is invoked with the ILP32 option, the macro _ILP32 is defined.

You can use a conditional compiler directive such as #if defined _LP64 or #ifdef _LP64 to select
lines of code that are appropriate for the data model that is invoked.

22 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

Chapter 2. Reentrancy in Enterprise Metal C for z/OS

This information describes the concept of reentrancy. It tells you how to use reentrancy in C programs to
help make your programs more efficient.

Reentrant programs are structured to allow multiple users to share a single copy of an executable module
or to use an executable module repeatedly without reloading. C achieves reentrancy by splitting your
program into two parts, which are maintained in separate areas of memory until the program terminates:

• The first part, which consists of executable code and constant data, does not change during program
execution.

• The second part contains persistent data that can be altered. This part includes the dynamic storage
area (DSA) and a piece of storage known as the writable static area.

If the program is installed in the Link Pack Area (LPA) or Extended Link Pack Area (ELPA) of your operating
system, only a single copy of the first (constant or reentrant) part exists within a single address space.
This occurs regardless of the number of users that are running the program simultaneously. This
reentrant part may be shared across address spaces or across sessions. In this case, the executable
module is loaded only once. Separate concurrent invocations of the program share or reenter the same
copy of the write-protected executable module. If the program is not installed in the LPA or ELPA area,
each invocation receives a private copy of the code part, but this copy may not be write-protected.

The modifiable writable static part of the program contains:

• All program variables with the static storage class
• All program variables receiving the extern storage class
• All writable strings
• All variable pointers for imported variables (non-XPLINK)
• All function pointers for imported functions (RENT)
• All variable linkage descriptors to reference imported variables (non-XPLINK)

Each user running the program receives a private copy of the second (data or non-reentrant) part. This
part, the data area, is modifiable by each user.

The code part of the program contains:

• Executable instructions
• Read-only constants
• Global objects compiled with the #pragma variable(identifier, NORENT)

Note: The ROCONST compiler option implicitly inserts a #pragma variable(identifier,
NORENT) for const qualified variables.

Natural or constructed reentrancy
Natural reentrancy

C programs that contain no references to the writable static objects listed in a previous section have
natural reentrancy. You do not need to compile naturally reentrant C programs with the RENT
compiler option or bind them with the binder.

Constructed reentrancy
C programs that contain references to writable static objects, can have constructed reentrancy. You
must bind these programs with the binder. You must use the RENT compiler option.

© Copyright IBM Corp. 2018 23

Limitations of constructed reentrancy for C programs
Even if a C program is large and will have more than one user at the same time, there are also these
limitations to consider:

• If the binder is used, the resultant program must reside in a PDSE or UNIX file system. If a PDSE
member should be installed into LPA or ELPA, it can only be installed into dynamic LPA.

• A system programmer can install only the shared portion of your program in the LPA or ELPA of your
operating system.

Controlling external static in C programs
Certain program variables with the extern storage class may be constant and never written. If this is the
case, every user does not need to have a separate copy of these variables. In addition, there may be a
need to share constant program variables between C and another language.

You can force an external variable to be the part of the program that includes executable code and
constant data by using the #pragma variable(varname, NORENT) directive. The program fragment
in Figure 6 on page 24 illustrates how this is accomplished.

#pragma options(RENT)

#pragma variable(rates, NORENT)
extern float rates[5] = { 3.2, 83.3, 13.4, 3.6, 5.0 };

extern float totals[5];

int main(void) {
 /* ... */
}

Figure 6. Controlling external static

In this example, the source file is compiled with the RENT option. The external variable rates are included
in the executable code because #pragma variable(rates, NORENT) is specified. The variable totals
are included with the writable static. Each user has a copy of the array totals, and the array rates are
shared among all users of the program.

The #pragma variable(varname, NORENT) does not apply to, and has no effect on, program
variables with the static storage class. Program variables with the static storage class are always
included in the writable static.

When specifying #pragma variable(varname, NORENT), ensure that this variable is never written; if
it is written, program exceptions or unpredictable program behavior may result. In addition, you must
include #pragma variable(varname, NORENT) in every source file where the variable is referenced
or defined. It is good practice to put these pragmas in a common header file.

Note: You can also use the keyword const to ensure that a variable is not written. See the const type
qualifier in for more information.

The ROCONST compiler option has the same effect as specifying the #pragma variable (var_name,
NORENT) for all constant variables (i.e. const qualified variables). The option gives the compiler the
choice of allocating const variables outside of the Writable Static Area (WSA). For more information, see
ROCONST | NOROCONST in .

Controlling writable strings
In a large number of C programs, character strings may be constant and never written to. If this is the
case, every user does not need a separate copy of these strings.

24 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

You can force all strings in a given source file to be the part of the program that includes executable code
and constant data by using #pragma strings(readonly) or the ROSTRING compiler option.
#unique_59/unique_59_Connect_42_makecon illustrates one way to make the strings constant.

Ensure that you do not write to read-only strings. The following code tries to overwrite the literal string
abcd because chrs is just a pointer:

char chrs[]= "abcd";
memcpy(chrs,"ABCD",4);

Program exceptions or unpredictable program behavior may result if you attempt to write to a string
constant.

The ROSTRING compiler option has the same effect as #pragma strings(readonly) in the program
source. For more information, see ROSTRING | NOROSTRING in .

Chapter 2. Reentrancy in Enterprise Metal C for z/OS 25

26 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

Chapter 3. Using vector programming support

Enterprise Metal C for z/OS supports vector programming by making use of the Vector Facility for z/
Architecture®.

The compiler supports vector processing technologies through language extensions, based on the AltiVec
Programming Interface specification and OpenPower ABI Vector Programming Interface specification
with suitable changes and extensions.

This chapter describes Enterprise Metal C for z/OS language extensions for vector processing support,
including compiler options, vector data types and operators, macro, and built-in functions.

Options
The vector language extensions are enabled only when all of the following options are in effect:

• ARCH(11) or a higher level
• FLOAT(AFP(NOVOLATILE))
• VECTOR

Notes:

• The VECTOR option implies LANGLVL(LONGLONG), which enables the vector bool long long,
vector signed long long, vector unsigned long long, __vector bool long long,
__vector signed long long, and __vector unsigned long long data types.

• The vector float, __vector float, vector double, and __vector double data types are only
available with FLOAT(IEEE).

• The vector float and __vector float data types are available at a minimum ARCH level of 12.

For more information about these compiler options, see .

Macro
The __VEC__ macro indicates the support for vector data types. The predefined value of __VEC__ is
10402.

Vector data types
Vector programming is supported to provide an efficient and expressive mechanism for programmers to
make use of the Vector Facility for z/Architecture from the C programming languages. This section
describes the supported vector data types.

In this syntax, type qualifiers and storage class specifiers can precede the keyword vector (or its
alternative spelling, __vector) in a declaration. Most of the legal forms of the syntax are captured in the
following diagram. Some variations have been omitted from the diagram for the sake of clarity: type
qualifiers such as const and storage class specifiers such as static can appear in any order within the
declaration, as long as neither immediately follows the keyword vector (or __vector).

© Copyright IBM Corp. 2018 27

Vector declaration syntax

type_qualifier

storage_class_specifier

vector

__vector

bool

signed

unsigned

char

short

int

int

long long

float

double

Notes:

• Both the keywords vector and __vector are recognized with the option VECTOR(TYPE); while only
__vector is recognized with the option VECTOR(NOTYPE).

• The keyword bool is recognized as a valid type specifier only when preceded by the keyword vector
or __vector.

• Duplicate type specifiers are ignored in a vector declaration context.
• The vector bool long long, vector signed long long, vector unsigned long long,
__vector bool long long, __vector signed long long, and __vector unsigned long
long data types are only available with LANGLVL(LONGLONG), which is implied by the VECTOR option.

• The vector floating-point types, which include vector float, __vector float, vector double,
and __vector double, are available only with FLOAT(IEEE).

• The vector float and __vector float data types are available at a minimum ARCH level of 12.

The following table lists the supported vector data types, the size and possible values for each type.

Table 16. Vector data types

Type Interpretation of content Range of values

vector unsigned char 16 unsigned char 0..255

vector signed char 16 signed char -128..127

vector bool char 16 unsigned char 0 (FALSE), 255 (TRUE)

vector unsigned short 8 unsigned short 0..65535

vector unsigned short int

vector signed short 8 signed short -32768..32767

vector signed short int

vector bool short 8 unsigned short 0 (FALSE), 65535 (TRUE)

vector bool short int

vector unsigned int 4 unsigned int 0..232-1

vector signed int 4 signed int -231..231-1

vector bool int 4 unsigned int 0 (FALSE), 232-1 (TRUE)

28 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

Table 16. Vector data types (continued)

Type Interpretation of content Range of values

vector unsigned long long 2 unsigned long long 0..264-1

vector signed long long 2 signed long long -263..263-1

vector bool long long 2 unsigned long long 0 (FALSE), 264-1 (TRUE)

vector float 4 float 32-bit IEEE-754 single precision
binary floating-point values

vector double 2 double 64-bit IEEE-754 double precision
binary floating-point values

All vector types are aligned on an 8-byte boundary. An aggregate that contains one or more vector types
is aligned on an 8-byte boundary, and padded, if necessary, so that each member of vector type is also 8-
byte aligned.

Language extensions
The C language is extended to support expressions and operations that are required to act on vector data
types.

Vector literals
A vector literal is a constant expression for which the value is interpreted as a vector type. The data type
of a vector literal is represented by a parenthesized vector type, and its value is a set of constant
expressions that represent the vector elements and are enclosed in parentheses or braces. When all
vector elements have the same value, the value of the literal can be represented by a single constant
expression. You can initialize vector types with vector literals.

Vector literal syntax
(vector_type) (literal_list)

{ literal_list }

literal_list
,

constant_expression

The vector_type is a supported vector type; see “Vector data types” on page 27 for a list of these.

The literal_list can be either of the following expressions:

• A single expression.

If the single expression is enclosed with parentheses, all elements of the vector are initialized to the
specified value. If the single expression is enclosed with braces, the first element of the vector is
initialized to the specified value, and the remaining elements of the vector are initialized to 0.

• A comma-separated list of expressions. Each element of the vector is initialized to the respectively
specified value.

The number of constant expressions is determined by the type of the vector and whether it is enclosed
with braces or parentheses.

If the comma-separated list of expressions is enclosed with braces, the number of constant
expressions can be equal to or less than the number of elements in the vector. If the number of
constant expressions is less than the number of elements in the vector, the values of the unspecified
elements are 0.

Chapter 3. Using vector programming support 29

If the comma-separated list of expressions is enclosed with parentheses, the number of constant
expressions must match the number of elements in the vector as follows:

2
For vector unsigned long long, vector signed long long, vector bool long long,
and vector double types.

4
For vector unsigned int, vector signed int, vector bool int, and vector float
types.

8
For vector unsigned short, vector signed short, and vector bool short types.

16
For vector unsigned char, vector signed char, and vector bool char types.

The following table shows the supported vector literals and how the compiler interprets them to
determine their values.

Table 17. Vector literals

Syntax Interpreted by the compiler as

(vector unsigned char)(unsigned int) A list of 16 unsigned 8-bit quantities that all
have the value of the single integer.

(vector unsigned char)(unsigned int, ...)

(vector unsigned char){unsigned int, ...}

A list of 16 unsigned 8-bit quantities with the
value specified by each of the 16 integers.

(vector signed char)(int) A list of 16 signed 8-bit quantities that all have
the value of the single integer.

(vector signed char)(int, ...)

(vector signed char){int, ...}

A list of 16 signed 8-bit quantities with the value
specified by each of the 16 integers.

(vector bool char)(unsigned int) A list of 16 unsigned 8-bit quantities that all
have the value of the single integer.

(vector bool char)(unsigned int, ...)

(vector bool char){unsigned int, ...}

A list of 16 unsigned 8-bit quantities with a
value specified by each of 16 integers.

(vector unsigned short)(unsigned int) A list of 8 unsigned 16-bit quantities that all
have the value of the single integer.

(vector unsigned short)(unsigned int, ...)

(vector unsigned short){unsigned int, ...}

A list of 8 unsigned 16-bit quantities with a
value specified by each of the 8 integers.

(vector signed short)(int) A list of 8 signed 16-bit quantities that all have
the value of the single integer.

(vector signed short)(int, ...)

(vector signed short){int, ...}

A list of 8 signed 16-bit quantities with a value
specified by each of the 8 integers.

(vector bool short)(unsigned int) A list of 8 unsigned 16-bit quantities that all
have the value of the single integer.

(vector bool short)(unsigned int, ...)

(vector bool short){unsigned int, ...}

A list of 8 unsigned 16-bit quantities with a
value specified by each of the 8 integers.

30 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

Table 17. Vector literals (continued)

Syntax Interpreted by the compiler as

(vector unsigned int)(unsigned int) A list of 4 unsigned 32-bit quantities that all
have the value of the single integer.

(vector unsigned int)(unsigned int, ...)

(vector unsigned int){unsigned int, ...}

A list of 4 unsigned 32-bit quantities with a
value specified by each of the 4 integers.

(vector signed int)(int) A list of 4 signed 32-bit quantities that all have
the value of the single integer.

(vector signed int)(int, ...)

(vector signed int){int, ...}

A list of 4 signed 32-bit quantities with a value
specified by each of the 4 integers.

(vector bool int)(unsigned int) A list of 4 unsigned 32-bit quantities that all
have the value of the single integer.

(vector bool int)(unsigned int, ...)

(vector bool int){unsigned int, ...}

A list of 4 unsigned 32-bit quantities with a
value specified by each of the 4 integers.

(vector unsigned long long)(unsigned long long) A list of 2 unsigned 64-bit quantities that both
have the value of the single long long.

(vector unsigned long long)(unsigned long long, ...)

(vector unsigned long long){unsigned long long, ...}

A list of 2 unsigned 64-bit quantities specified
with a value by each of the 2 unsigned long
longs.

(vector signed long long)(signed long long) A list of 2 signed 64-bit quantities that both
have the value of the single long long.

(vector signed long long)(signed long long, ...)

(vector signed long long){signed long long, ...}

A list of 2 signed 64-bit quantities with a value
specified by each of the 2 long longs.

(vector bool long long)(unsigned long long) A list of 2 boolean 64-bit quantities with a value
specified by the single unsigned long long.

(vector bool long long)(unsigned long long, ...)

(vector bool long long){unsigned long long, ...}

A list of 2 boolean 64-bit quantities with a value
specified by each of the 2 unsigned long longs.

(vector float)(float) A set of 4 32-bit IEEE-754 single-precision
binary floating-point quantities that all have the
value of the single float.

(vector float)(float, ...)

(vector float){float, ...}

A set of 4 32-bit IEEE-754 single-precision
binary floating-point quantities with a value
specified by each of the 4 floats.

(vector double)(double) A list of 2 64-bit IEEE-754 double-precision
binary floating-point quantities that both have
the value of the single double.

(vector double)(double, double)

(vector double){double, double}

A list of 2 64-bit IEEE-754 double-precision
binary floating-point quantities with a value
specified by each of the 2 doubles.

Note: The value of an element in a vector bool is FALSE if each bit of the element is set to 0 and TRUE if
each bit of the element is set to 1.

Chapter 3. Using vector programming support 31

For example, for an unsigned integer vector type, the literal could be either of the following:

(vector unsigned int)(10) /* initializes all four elements to a value of 10 */
(vector unsigned int)(14, 82, 73, 700) /* initializes the first element
 to 14, the second element to 82,
 the third element to 73, and the
 fourth element to 700 */

You can cast vector literals with the Cast operator (). Enclosing the vector literal to be cast in
parentheses can improve the readability of the code. For example, you can use the following code to cast
a vector signed int literal to a vector unsigned char literal:

(vector unsigned char)((vector signed int)(-1, -1, 0, 0))

Initialization of vectors
A vector type can be initialized by a vector literal, or any expression having the same vector type. For
example:

vector unsigned int v1;
vector unsigned int v2 = (vector unsigned int)(10);
v1 = v2;

A vector type can also be initialized by an initializer list.
Vector initializer list syntax

vector_type ? identifier = (initializer_list)

{ initializer_list }

;

An initializer list enclosed with parentheses must have the same number of value as the number of
elements of the vector type. The number of values in a braced initializer list must be less than or equal to
the number of elements of the vector type. Any uninitialized element will be initialized to zero.

The following examples show vector initialization using initializer lists:

vector unsigned int v1 = {1}; // initialize the first element (4 bytes) of v1
 // with 1 and the remaining 3 elments (12 bytes)
 // with zeros

vector unsigned int v2 = {1,2}; // initialize the first element (4 bytes) of v2
 // with 1, the next element (4 bytes) with 2,
 // and the remaining elements (8 bytes) with zeros

vector unsigned int v3 = {1,2,3,4}; // equivalent to the vector literal
 // (vector unsigned int) (1,2,3,4)

Unlike vector literals, the values in the initializer list do not have to be constant expressions unless the
initialized vector variable has static duration. Thus, the following code is valid:

int i=1;
int function() { return 2; }
int main()
{
 vector unsigned int v1 = {i, function()};
 return 0;
}

typedef definitions for vector types
With a typedef declaration, you can define your own identifiers that can be used in place of type
specifiers.

typedef definitions are extended to handle vector types, provided that vector support is enabled. A
vector type can be used in a typedef definition, and the new type name can be used in the usual ways,
except for declaring other vectors. In a vector declaration context, a typedef name is disallowed as a
type specifier.

32 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

The following example illustrates a typical usage of typedef with vector types:

typedef vector unsigned short vushort4;
vushort4 v1;

Pointers
If you dereference a pointer to a vector data type, the standard behavior of either a load or a copy of the
corresponding type is performed.

Pointer arithmetic can be used on vector data types. The result of the operation p+1 is a pointer to the
next vector after the vector pointed to by p.

Unary expressions
Some unary expressions are extended for the vector data types.

Unary operators ++ -- + - ~

Vector data types can use some of the unary operators that are used with primitive data types, as outlined
in the table below. These operators are not supported at global scope or for objects with static duration,
and there is no constant folding. Each element in the vector has the operation applied to it.

Table 18. Unary operators

Operator Integer vector types
Floating-point vector
types Bool vector types

++ Yes Yes No

−− Yes Yes No

+ Yes Yes No

− Yes 1 Yes 2 No

~ Yes No Yes

Notes:

1. Unary minus operator - treats unsigned integer vectors as signed integer vectors implicitly.
2. Unary minus operator - on floating-point vector types will not cause IEEE exception.

Related information
“Vector data types” on page 27

Address operator &

The & (address) operator can be used on the vector data types. It yields a pointer to the corresponding
vector data type.

The __alignof__ operator

The __alignof__ operator is a language extension to C99 that returns the position to which its operand
is aligned.

The operand of __alignof__ can be a vector type, provided that vector support is enabled. For example,

vector unsigned int v1 = (vector unsigned int)(10);
vector unsigned int *pv1 = &v1;
__alignof__(v1); // vector type alignment: 8.
__alignof__(&v1); // address of vector alignment: 4 (with ILP32) or 8 (with LP64).
__alignof__(*pv1); // dereferenced pointer to vector alignment: 8.
__alignof__(pv1); // pointer to vector alignment: 4 (with ILP32) or 8 (with LP64)
__alignof__(vector signed char); // vector type alignment: 8.

Chapter 3. Using vector programming support 33

When __attribute__((aligned)) is used to increase the alignment of a variable of vector type, the
value that is returned by the __alignof__ operator is the alignment factor that is specified by
__attribute__((aligned)).

The sizeof operator

The sizeof operator yields the size in bytes of the operand.

The operand of the sizeof operator can be a vector variable, a vector type, or the result of dereferencing
a pointer to vector type, provided that vector support is enabled. In these cases, the return value of
sizeof is always 16. For example,

vector bool int v1;
vector bool int *pv1 = &v1;
sizeof(v1); // vector type: 16.
sizeof(&v1); // address of vector: 4 (with ILP32) or 8 (with LP64).
sizeof(*pv1); // dereferenced pointer to vector: 16.
sizeof(pv1); // pointer to vector: 4 (with ILP32) or 8 (with LP64).
sizeof(vector double); // vector type: 16.

The typeof operator

The typeof operator returns the type of its argument, which can be an expression or a type.

It is extended to accept a vector type as its operand, when vector support is enabled.

The vec_step operator

The vec_step operator takes a vector type operand and returns an integer value representing the
amount by which a pointer to a vector element should be incremented in order to move by 16 bytes (the
size of a vector), or equivalently, the number of elements in the vector. The following table provides a
summary of values by data type.

Table 19. Increment value for vec_step by data type

vec_step expresssion Value

vec_step(vector unsigned char)

vec_step(vector signed char)

vec_step(vector bool char)

16

vec_step(vector unsigned short)

vec_step(vector signed short)

vec_step(vector bool short)

8

vec_step(vector unsigned int)

vec_step(vector signed int)

vec_step(vector bool int)

4

vec_step(vector unsigned long long)

vec_step(vector signed long long)

vec_step(vector bool long long)

2

vec_step(vector float) 4

vec_step(vector double) 2

34 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

Binary expressions
Some binary expressions that are used with primitive data types are extended for the vector data types.

For binary operators, each element has the operation applied to it with the same position element in the
second operand. Binary operators also include assignment operators.

Table 20. Binary operators

Operator Integer vector types
Floating-point vector
types Bool vector types

* Yes Yes No

/ Yes Yes No

% Yes No No

+ Yes Yes No

− Yes Yes No

<< Yes No No

>> Yes No No

& Yes Yes Yes

^ Yes Yes Yes

| Yes Yes Yes

[] Yes Yes Yes

Notes:

• The [] operator returns the vector element at the position specified.
• These operators might not be portable.

For relational operators, each element has the operation applied to it with the same position element in
the second operand and the results have the AND operator applied to them to get a final result of a single
value. The following table provides a summary on the binary operators that can operate on some of the
vector data types.

Table 21. Relational operators

Operator Integer vector types
Floating-point vector
types Bool vector types

== Yes Yes Yes

!= Yes Yes Yes

> Yes Yes No

< Yes Yes No

>= Yes Yes No

<= Yes Yes No

These operators are not supported at global scope or for objects with static duration, and there is no
constant folding.

The following sections provide details on each of the supported binary operators with the vector data
types. For general detailed information about binary operators, see Binary expressions in .

Chapter 3. Using vector programming support 35

Related information
“Vector data types” on page 27

Assignment operator =

An assignment operator stores a value in the object designated by the left operand. If either side of an
assignment expression is a vector type, both sides of the expression must be of the same vector type.
Therefore, the expression a = b is valid and represents assignment if a and b are of the same vector
type. Otherwise, the expression is invalid, and the compiler reports an error about inconsistent data
types.

Multiplication operator *

The * (multiplication) operator yields the product of its operands.

Note: This function emulates the operation on vector unsigned long long and vector signed
long long.

The following table lists the vector data types accepted as the operands, and the corresponding returned
vector data types:

Table 22. Accepted vector data types for multiplication operator *

Result types Left operand types Right operand types

vector unsigned char vector unsigned char vector unsigned char

vector signed char vector signed char vector signed char

vector unsigned short vector unsigned short vector unsigned short

vector signed short vector signed short vector signed short

vector unsigned int vector unsigned int vector unsigned int

vector signed int vector signed int vector signed int

vector unsigned long long vector unsigned long long vector unsigned long long

vector signed long long vector signed long long vector signed long long

vector float vector float vector float

vector double vector double vector double

Division operator /

The / (division) operator yields the algebraic quotient of its operands.

Note: This function emulates the operation on integer vector types.

The following table lists the vector data types accepted as the operands, and the corresponding returned
vector data types:

Table 23. Accepted vector data types for division operator /

Result types Left operand types Right operand types

vector signed char vector signed char vector signed char

vector unsigned char vector unsigned char vector unsigned char

vector signed short vector signed short vector signed short

vector unsigned short vector unsigned short vector unsigned short

vector signed int vector signed int vector signed int

vector unsigned int vector unsigned int vector unsigned int

36 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

Table 23. Accepted vector data types for division operator / (continued)

Result types Left operand types Right operand types

vector signed long long vector signed long long vector signed long long

vector unsigned long long vector unsigned long long vector unsigned long long

vector float vector float vector float

vector double vector double vector double

Remainder operator %

The % (remainder) operator yields the remainder from the division of the left operand by the right
operand.

The following table lists the vector data types accepted as the operands, and the corresponding returned
vector data types:

Table 24. Accepted vector data types for remainder operator %

Result types Left operand types Right operand types

vector signed char vector signed char vector signed char

vector unsigned char vector unsigned char vector unsigned char

vector signed short vector signed short vector signed short

vector unsigned short vector unsigned short vector unsigned short

vector signed int vector signed int vector signed int

vector unsigned int vector unsigned int vector unsigned int

vector signed long long vector signed long long vector signed long long

vector unsigned long long vector unsigned long long vector unsigned long long

Addition operator +

The + (addition) operator yields the sum of its operands.

The following table lists the vector data types accepted as the operands, and the corresponding returned
vector data types:

Table 25. Accepted vector data types for addition operator +

Result types Left operand types Right operand types

vector signed char vector signed char vector signed char

vector unsigned char vector unsigned char vector unsigned char

vector signed short vector signed short vector signed short

vector unsigned short vector unsigned short vector unsigned short

vector signed int vector signed int vector signed int

vector unsigned int vector unsigned int vector unsigned int

vector signed long long vector signed long long vector signed long long

vector unsigned long long vector unsigned long long vector unsigned long long

vector float vector float vector float

vector double vector double vector double

Chapter 3. Using vector programming support 37

Subtraction operator -

The - (subtraction) operator yields the difference of its operands.

The following table lists the vector data types accepted as the operands, and the corresponding returned
vector data types:

Table 26. Accepted vector data types for subtraction operator -

Result types Left operand types Right operand types

vector signed char vector signed char vector signed char

vector unsigned char vector unsigned char vector unsigned char

vector signed short vector signed short vector signed short

vector unsigned short vector unsigned short vector unsigned short

vector signed int vector signed int vector signed int

vector unsigned int vector unsigned int vector unsigned int

vector signed long long vector signed long long vector signed long long

vector unsigned long long vector unsigned long long vector unsigned long long

vector float vector float vector float

vector double vector double vector double

Bitwise left shift operator <<

The << (bitwise left shift operator) performs a left shift for each element of a vector. Each element of the
result vector is the result of left shifting the corresponding element of the left operand by the number of
bits specified by the value specified on the right operand, or the value of the corresponding element of the
right operand, modulo the number of bits in the element. The bits that are shifted out are replaced by
zeros.

The following table lists the vector data types accepted as the operands, and the corresponding returned
vector data types:

Table 27. Accepted vector data types for bitwise left shift operator <<

Result types Left operand types Right operand types

vector unsigned char vector unsigned char vector unsigned char

vector signed char vector signed char

vector unsigned short vector unsigned short vector unsigned short

vector signed short vector signed short

vector unsigned int vector unsigned int vector unsigned int

vector signed int vector signed int

vector unsigned long long vector unsigned long long vector unsigned long long

vector signed long long vector signed long long

vector unsigned char vector unsigned char unsigned long

vector signed char vector signed char

vector unsigned short vector unsigned short unsigned long

vector signed short vector signed short

38 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

Table 27. Accepted vector data types for bitwise left shift operator << (continued)

Result types Left operand types Right operand types

vector unsigned int vector unsigned int unsigned long

vector signed int vector signed int

vector unsigned long long vector unsigned long long unsigned long

vector signed long long vector signed long long

Bitwise right shift operator >>

The >> (bitwise right shift operator) performs a logical or an algebraic right shift for each element of a
vector. Each element of the result vector is the result of right shifting the corresponding element of the
left operand by the number of bits specified by the value of the corresponding element of the right
operand, modulo the number of bits in the element. When the right operand is an unsigned vector type,
the bits that are shifted out are replaced by zeroes. While if the left operand is a signed vector type, the
bits that are shifted out are replaced by copies of the most significant bit of the element of the left
operand.

The following table lists the vector data types accepted as the operands, and the corresponding returned
vector data types:

Table 28. Accepted vector data types for bitwise right shift operator >>

Result types Left operand types Right operand types

vector unsigned char vector unsigned char vector unsigned char

vector unsigned short vector unsigned short vector unsigned short

vector unsigned int vector unsigned int vector unsigned int

vector unsigned long long vector unsigned long long vector unsigned long long

vector unsigned char vector unsigned char unsigned long

vector unsigned short vector unsigned short unsigned long

vector unsigned int vector unsigned int unsigned long

vector unsigned long long vector unsigned long long unsigned long

vector signed char vector signed char vector signed char

vector unsigned char

vector signed short vector signed short vector signed short

vector unsigned short

vector signed int vector signed int vector signed int

vector unsigned int

vector signed long long vector signed long long vector signed long long

vector unsigned long long

vector signed char vector signed char unsigned long

vector signed short vector signed short unsigned long

vector signed int vector signed int unsigned long

vector signed long long vector signed long long unsigned long

Chapter 3. Using vector programming support 39

Relational less than operator <

The < (relational less than operator) tests whether all elements of the left operand are less than the
corresponding elements of the right operand. The result is 1 if all elements of the left operand are less
than the corresponding elements of the right operand. Otherwise, the result is 0.

Note: A signed comparison is performed, if either of the operands is a signed integer vector.

The following table lists the vector data types accepted as the operands:

Table 29. Accepted vector data types for relational less than operator <

Left operand types Right operand types

vector signed char vector signed char

vector unsigned char vector unsigned char

vector signed short vector signed short

vector unsigned short vector unsigned short

vector signed int vector signed int

vector unsigned int vector unsigned int

vector signed long long vector signed long long

vector unsigned long long vector unsigned long long

vector float vector float

vector double vector double

Relational greater than operator >

The > (relational greater than operator) tests whether all elements of the left operand are greater than the
corresponding elements of the right operand. The result is 1 if all elements of the left operand are greater
than the corresponding elements of the right operand. Otherwise, the result is 0.

Note: A signed comparison is performed, if either of the operands is a signed integer vector.

The following table lists the vector data types accepted as the operands:

Table 30. Accepted vector data types for relational greater than operator >

Left operand types Right operand types

vector signed char vector signed char

vector unsigned char vector unsigned char

vector signed short vector signed short

vector unsigned short vector unsigned short

vector signed int vector signed int

vector unsigned int vector unsigned int

vector signed long long vector signed long long

vector unsigned long long vector unsigned long long

vector float vector float

vector double vector double

40 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

Relational less than or equal to operator <=

The <= (relational less than or equal to operator) tests whether all elements of the left operand are less
than or equal to the corresponding elements of the right operand. The result is 1 if all elements of the left
operand are less than or equal to the corresponding elements of the right operand. Otherwise, the result
is 0.

Note: A signed comparison is performed, if either of the operands is a signed integer vector.

The following table lists the vector data types accepted as the operands:

Table 31. Accepted vector data types for relational less than or equal to operator <=

Left operand types Right operand types

vector signed char vector signed char

vector unsigned char vector unsigned char

vector signed short vector signed short

vector unsigned short vector unsigned short

vector signed int vector signed int

vector unsigned int vector unsigned int

vector signed long long vector signed long long

vector unsigned long long vector unsigned long long

vector float vector float

vector double vector double

Relational greater than or equal to operator >=

The >= (relational greater than or equal to operator) tests whether all elements of the left operand are
greater than or equal to the corresponding elements of the right operand. The result is 1 if all elements of
the left operand are greater than or equal to the corresponding elements of the right operand. Otherwise,
the result is 0.

Note: A signed comparison is performed, if either of the operands is a signed integer vector.

The following table lists the vector data types accepted as the operands:

Table 32. Accepted vector data types for relational greater than or equal to operator >=

Left operand types Right operand types

vector signed char vector signed char

vector unsigned char vector unsigned char

vector signed short vector signed short

vector unsigned short vector unsigned short

vector signed int vector signed int

vector unsigned int vector unsigned int

vector signed long long vector signed long long

vector unsigned long long vector unsigned long long

vector float vector float

vector double vector double

Chapter 3. Using vector programming support 41

Equality operator ==

The == (equality operator) tests whether all sets of corresponding elements of the given vectors are
equal. The result is 1 if each element of the left operand is equal to the corresponding element of the right
operand. Otherwise, the result is 0.

The following table lists the vector data types accepted as the operands:

Table 33. Accepted vector data types for equality operator ==

Left operand types Right operand types

vector bool char vector bool char

vector signed char vector signed char

vector unsigned char vector unsigned char

vector bool short vector bool short

vector signed short vector signed short

vector unsigned short vector unsigned short

vector bool int vector bool int

vector signed int vector signed int

vector unsigned int vector unsigned int

vector bool long long vector bool long long

vector signed long long vector signed long long

vector unsigned long long vector unsigned long long

vector float vector float

vector double vector double

Inequality operator !=

The != (inequality operator) tests whether all sets of corresponding elements of the given vectors are not
equal. The result is 1 if each element of the left operand is not equal to the corresponding element of the
right operand. Otherwise, the result is 0.

The following table lists the vector data types accepted as the operands:

Table 34. Accepted vector data types for inequality operator !=

Left operand types Right operand types

vector bool char vector bool char

vector signed char vector signed char

vector unsigned char vector unsigned char

vector bool short vector bool short

vector signed short vector signed short

vector unsigned short vector unsigned short

vector bool int vector bool int

vector signed int vector signed int

vector unsigned int vector unsigned int

vector bool long long vector bool long long

42 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

Table 34. Accepted vector data types for inequality operator != (continued)

Left operand types Right operand types

vector signed long long vector signed long long

vector unsigned long long vector unsigned long long

vector float vector float

vector double vector double

Bitwise AND operator &

The & (bitwise AND) operator compares each bit of its first operand to the corresponding bit of the second
operand.

The following table lists the vector data types accepted as the operands, and the corresponding returned
vector data types:

Table 35. Accepted vector data types for bitwise AND operator &

Result types Left operand types Right operand types

vector bool char vector bool char vector bool char

vector signed char vector signed char vector signed char

vector unsigned char vector unsigned char vector unsigned char

vector bool short vector bool short vector bool short

vector signed short vector signed short vector signed short

vector unsigned short vector unsigned short vector unsigned short

vector bool int vector bool int vector bool int

vector signed int vector signed int vector signed int

vector unsigned int vector unsigned int vector unsigned int

vector bool long long vector bool long long vector bool long long

vector signed long long vector signed long long vector signed long long

vector unsigned long long vector unsigned long long vector unsigned long long

vector float vector float vector float

vector double vector double vector double

Bitwise exclusive OR operator ^

The ^ (bitwise exclusive OR) operator compares each bit of its first operand to the corresponding bit of
the second operand.

Note: vector double will not cause IEEE exception.

The following table lists the vector data types accepted as the operands, and the corresponding returned
vector data types:

Table 36. Accepted vector data types for bitwise exclusive OR operator ^

Result types Left operand types Right operand types

vector bool char vector bool char vector bool char

vector signed char vector signed char vector signed char

Chapter 3. Using vector programming support 43

Table 36. Accepted vector data types for bitwise exclusive OR operator ^ (continued)

Result types Left operand types Right operand types

vector unsigned char vector unsigned char vector unsigned char

vector bool short vector bool short vector bool short

vector signed short vector signed short vector signed short

vector unsigned short vector unsigned short vector unsigned short

vector bool int vector bool int vector bool int

vector signed int vector signed int vector signed int

vector unsigned int vector unsigned int vector unsigned int

vector bool long long vector bool long long vector bool long long

vector signed long long vector signed long long vector signed long long

vector unsigned long long vector unsigned long long vector unsigned long long

vector float vector float vector float

vector double vector double vector double

Bitwise inclusive OR operator |

The | (bitwise inclusive OR) operator compares the values (in binary format) of each operand and yields a
value whose bit pattern shows which bits in either of the operands has the value 1.

Note: vector double will not cause IEEE exception.

The following table lists the vector data types accepted as the operands, and the corresponding returned
vector data types:

Table 37. Accepted vector data types for bitwise inclusive OR operator |

Result types Left operand types Right operand types

vector bool char vector bool char vector bool char

vector signed char vector signed char vector signed char

vector unsigned char vector unsigned char vector unsigned char

vector bool short vector bool short vector bool short

vector signed short vector signed short vector signed short

vector unsigned short vector unsigned short vector unsigned short

vector bool int vector bool int vector bool int

vector signed int vector signed int vector signed int

vector unsigned int vector unsigned int vector unsigned int

vector bool long long vector bool long long vector bool long long

vector signed long long vector signed long long vector signed long long

vector unsigned long long vector unsigned long long vector unsigned long long

vector float vector float vector float

vector double vector double vector double

44 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

Vector subscripting operator []

The [] (subscripting) operator accesses individual elements of a vector data type, similar to how array
elements are accessed. The vector data type is followed by a set of square brackets containing the
position of the element. The position of the first element is 0. The type of the result is the type of the
elements contained in the vector type.

Note: If the position specified is outside of the valid range, the behavior is undefined.

Example:

vector unsigned int v1 = {1,2,3,4};
unsigned int u1, u2, u3, u4;
u1 = v1[0]; // u1=1
u2 = v1[1]; // u2=2
u3 = v1[2]; // u3=3
u4 = v1[3]; // u4=4

Note: You can also access and manipulate individual elements of vectors with the following intrinsic
functions:

• vec_extract
• vec_insert
• vec_promote
• vec_splats

Cast expressions
The cast operator () is extended to support explicit type conversions from one vector data type to
another vector data type. The exact same bit pattern is retained from the cast, and no conversion of the
vector elements value takes place.

Casting between any scalar types and vector types are not allowed. To manipulate a vector element, the
vector subscripting operator [], or the set of gather and scatter vector built-in functions should be used.

Compound literal expressions
A compound literal is a postfix expression that provides an unnamed object whose value is given by an
initializer list. The C99 language feature allows you to pass parameters to functions without the need for
temporary variables.

A static vector variable can be initialized with a compound literal of the same type, provided that all the
initializers in the initializer list are constant expressions.

Other extensions for vector types
The following runtime library functions are also extended to support vector processing:

• sprintf() — Format and write data
• sscanf() — Read and format data
• va_arg(), va_copy(), va_end(), va_start() — Access function arguments

Vector built-in functions
Individual elements of vectors can be accessed and manipulated by using the vector built-in functions.
You must enable the vector support to use these built-in functions. This section provides description of
the supported vector built-in functions.

This section uses pseudo code description to represent the built-in function syntax, as shown below:

d = builtin_name(a, b, c)

Chapter 3. Using vector programming support 45

In the description,

• d represents the return value of the built-in function.
• a, b, and c represent the arguments of the built-in function.
• builtin_name is the name of the built-in function.

For example, the syntax for the built-in function with the prototype of vector double vec_xl(long,
double*) is represented by d = vec_xl(a, b).

Allowed data types for the return value and arguments of the built-in functions are provided in the tables
after the description of the built-in functions.

Note: The tables only list the supported vector data types with the vector keyword. The same data types
with the __vector keyword, which is the alternative spelling of vector, are also supported.

Header file
To use the vector built-in functions, you must include builtins.h and compile the program with the
LANGLVL(EXTENDED) or LANGLVL(LIBEXT) option.

Summary of vector built-in functions
The tables below summarize and categorize the vector built-in functions.

Arithmetic

Table 38. Vector built-in functions for arithmetic

Function name Short name description
More
information

vec_abs Vector Absolute Value See detail

vec_add_u128 Vector Add unsigned 128-bits See detail

vec_addc Vector Add Carryout See detail

vec_addc_u128 Vector Add Compute Carryout unsigned 128-
bits

See detail

vec_adde_u128 Vector Add With Carry unsigned 128-bits See detail

vec_addec_u128 Vector Add With Carry Compute Carry unsigned
128-bits

See detail

vec_andc Vector AND With Complement See detail

vec_avg Vector Average See detail

vec_checksum Vector Checksum See detail

vec_gfmsum Vector Galois Field Multiply Sum See detail

vec_gfmsum_128 Vector Galois Field Multiply Sum 128-bits See detail

vec_gfmsum_accum Vector Galois Field Multiply Sum and
Accumulate

See detail

vec_gfmsum_accum_128 Vector Galois Field Multiply Sum and
Accumulate 128-bits

See detail

vec_madd Vector Multiply Add See detail

vec_max Vector Maximum See detail

vec_meadd Vector Multiply and Add Even See detail

46 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

Table 38. Vector built-in functions for arithmetic (continued)

Function name Short name description
More
information

vec_mhadd Vector Multiply and Add High See detail

vec_min Vector Minimum See detail

vec_mladd Vector Multiply and Add Low See detail

vec_moadd Vector Multiply and Add Odd See detail

vec_msub Vector Multiply Subtract See detail

vec_msum_u128 Vector Multiply Sum Logical See detail

vec_mule Vector Multiply Even See detail

vec_mulh Vector Multiply High See detail

vec_mulo Vector Multiply Odd See detail

vec_nabs Vector Negative Absolute See detail

vec_nmadd Vector Negative Multiply Add See detail

vec_nmsub Vector Negative Multiply Subtract See detail

vec_sqrt Vector Square Root See detail

vec_sub_u128 Vector Subtract unsigned 128-bits See detail

vec_subc Vector Subtract Carryout See detail

vec_subc_u128 Vector Subtract Carryout unsigned 128-bits See detail

vec_sube_u128 Vector Subtract with Carryout See detail

vec_subec_u128 Vector Subtract with Carryout, Carryout See detail

vec_sum_u128 Vector Sum Across Quadword See detail

vec_sum2 Vector Sum Across Doubleword See detail

vec_sum4 Vector Sum Across Word See detail

Compare

Table 39. Vector built-in functions for comparing elements

Function name Short name description
More
information

vec_cmpeq Vector Compare Equal See detail

vec_cmpeq_idx Vector Compare Equal Index See detail

vec_cmpeq_idx_cc Vector Compare Equal Index with Condition
Code

See detail

vec_cmpeq_or_0_idx Vector Compare Equal or Zero Index See detail

vec_cmpeq_or_0_idx_cc Vector Compare Equal or Zero Index with
Condition Code

See detail

vec_cmpge Vector Compare Greater Than or Equal See detail

vec_cmpgt Vector Compare Greater Than See detail

Chapter 3. Using vector programming support 47

Table 39. Vector built-in functions for comparing elements (continued)

Function name Short name description
More
information

vec_cmple Vector Compare Less Than or Equal See detail

vec_cmplt Vector Compare Less Than See detail

vec_cmpne_idx Vector Compare Not Equal Index See detail

vec_cmpne_idx_cc Vector Compare Not Equal Index with Condition
Code

See detail

vec_cmpne_or_0_idx Vector Compare Not Equal or Zero Index See detail

vec_cmpne_or_0_idx_cc Vector Compare Not Equal or Zero Index with
Condition Code

See detail

Compare Ranges

Table 40. Vector built-in functions for comparing ranges

Function name Short name description
More
information

vec_cmpnrg Vector Compare Not in Ranges See detail

vec_cmpnrg_cc Vector Compare Not in Ranges with Condition
Code

See detail

vec_cmpnrg_idx Vector Compare Not in Ranges Index See detail

vec_cmpnrg_idx_cc Vector Compare Not in Ranges Index with
Condition Code

See detail

vec_cmpnrg_or_0_idx Vector Compare Not in Ranges or Zero Index See detail

vec_cmpnrg_or_0_idx_cc Vector Compare Not in Ranges or Zero Index
with Condition Code

See detail

vec_cmprg Vector Compare Ranges See detail

vec_cmprg_cc Vector Compare Ranges with Condition Code See detail

vec_cmprg_idx Vector Compare Ranges Index See detail

vec_cmprg_idx_cc Vector Compare Ranges Index with Condition
Code

See detail

vec_cmprg_or_0_idx Vector Compare Ranges or Zero Index See detail

vec_cmprg_or_0_idx_cc Vector Compare Ranges or Zero Index with
Condition Code

See detail

Find Any Element

Table 41. Vector built-in functions for element searching

Function name Short name description
More
information

vec_find_any_eq Vector Find Any Element Equal See detail

vec_find_any_eq_cc Vector Find Any Element Equal with Condition
Code

See detail

48 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

Table 41. Vector built-in functions for element searching (continued)

Function name Short name description
More
information

vec_find_any_eq_idx Vector Find Any Element Equal Index See detail

vec_find_any_eq_idx_cc Vector Find Any Element Equal Index with
Condition Code

See detail

vec_find_any_eq_or_0_idx Vector Find Any Element Equal or Zero Index See detail

vec_find_any_eq_or_0_idx_cc Vector Find Any Element Equal or Zero Index
with Condition Code

See detail

vec_find_any_ne Vector Find Any Element Not Equal See detail

vec_find_any_ne_cc Vector Find Any Element Not Equal with
Condition Code

See detail

vec_find_any_ne_idx Vector Find Any Element Not Equal Index See detail

vec_find_any_ne_idx_cc Vector Find Any Element Not Equal Index with
Condition Code

See detail

vec_find_any_ne_or_0_idx Vector Find Any Element Not Equal or Zero
Index

See detail

vec_find_any_ne_or_0_idx_cc Vector Find Any Element Not Equal or Zero
Index with Condition Code

See detail

Gather and Scatter

Table 42. Vector built-in functions for gathering and scattering elements

Function name Short name description
More
information

vec_bperm_u128 Vector Bit Permute See detail

vec_extract Vector Extract See detail

vec_gather_element Vector Gather Element See detail

vec_insert Vector Insert See detail

vec_insert_and_zero Vector Insert and Zero See detail

vec_perm Vector Permute See detail

vec_promote Vector Promote See detail

vec_scatter_element Vector Scatter Element See detail

vec_sel Vector Select See detail

Generate Mask

Table 43. Vector built-in functions for generating mask

Function name Short name description
More
information

vec_genmask Vector Generate Byte Mask See detail

vec_genmasks_8 Vector Generate Mask (Byte) See detail

Chapter 3. Using vector programming support 49

Table 43. Vector built-in functions for generating mask (continued)

Function name Short name description
More
information

vec_genmasks_16 Vector Generate Mask (Halfword) See detail

vec_genmasks_32 Vector Generate Mask (Word) See detail

vec_genmasks_64 Vector Generate Mask (Doubleword) See detail

Copy until Zero

Table 44. Vector built-in functions for copying until a zero is encountered

Function name Short name description
More
information

vec_cp_until_zero Vector Copy Until Zero See detail

vec_cp_until_zero_cc Vector Copy Until Zero See detail

Load and Store

Table 45. Vector built-in functions for loading and storing vectors

Function name Short name description
More
information

vec_load_bndry Vector Load to Block Boundary See detail

vec_load_len Vector Load with Length See detail

vec_load_len_r Vector Load Rightmost with Length See detail

vec_load_pair Vector Load Pair See detail

vec_store_len Vector Store with Length See detail

vec_store_len_r Vector Store Rightmost with Length See detail

vec_xl Vector Load See detail

vec_xst Vector Store See detail

Logical

Table 46. Vector built-in functions for logical calculation

Function name Short name description
More
information

vec_cntlz Vector Count Leading Zeros See detail

vec_cnttz Vector Count Trailing Zeros See detail

vec_eqv Vector XNOR See detail

vec_nand Vector NAND See detail

vec_nor Vector NOR See detail

vec_orc Vector OR with Complement See detail

vec_popcnt Vector Population Count See detail

50 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

Merge

Table 47. Vector built-in functions for merging vectors

Function name Short name description
More
information

vec_mergeh Vector Merge High See detail

vec_mergel Vector Merge Low See detail

Pack and Unpack

Table 48. Vector built-in functions for pack and unpack

Function name Short name description
More
information

vec_pack Vector Pack See detail

vec_packs Vector Pack Saturate See detail

vec_packs_cc Vector Pack Saturate Condition Code See detail

vec_packsu Vector Pack Saturated Unsigned See detail

vec_packsu_cc Vector Pack Saturated Unsigned Condition
Code

See detail

vec_unpackh Vector Unpack High Element See detail

vec_unpackl Vector Unpack Low Element See detail

Replicate

Table 49. Vector built-in functions for replicating vector elements

Function name Short name description
More
information

vec_splat Vector Splat See detail

vec_splat_s8 Vector Splat Signed Byte See detail

vec_splat_s16 Vector Splat Signed Halfword See detail

vec_splat_s32 Vector Splat Signed Word See detail

vec_splat_s64 Vector Splat Signed Doubleword See detail

vec_splat_u8 Vector Splat Unsigned Byte See detail

vec_splat_u16 Vector Splat Unsigned Halfword See detail

vec_splat_u32 Vector Splat Unsigned Word See detail

vec_splat_u64 Vector Splat Doubleword See detail

vec_splats Vector Splats See detail

Chapter 3. Using vector programming support 51

Rotate and Shift

Table 50. Vector built-in functions for rotate and shift

Function name Short name description
More
information

vec_rl Vector Element Rotate Left See detail

vec_rl_mask Vector Element Rotate and Insert Under Mask See detail

vec_rli Vector Element Rotate Left Immediate See detail

vec_slb Vector Shift Left by Byte See detail

vec_sld Vector Shift Left Double by Byte See detail

vec_sldw Vector Shift Left Double by Word See detail

vec_sll Vector Shift Left See detail

vec_srab Vector Shift Right Arithmetic by Byte See detail

vec_sral Vector Shift Right Arithmetic See detail

vec_srb Vector Shift Right by Byte See detail

vec_srl Vector Shift Right See detail

Rounding and Conversion

Table 51. Vector built-in functions for rounding and conversion

Function name Short name description
More
information

vec_ceil Vector Ceiling See detail

vec_double Vector Convert from Logical See detail

vec_doublee Vector Load Lengthened See detail

vec_extend_s64 Vector Sign Extend to Doubleword See detail

vec_floate Vector Load Rounded See detail

vec_floor Vector Floor See detail

vec_rint Vector Round to Integer See detail

vec_round Vector Round to Nearest See detail

vec_roundc Vector Round to Current® See detail

vec_roundm Vector Round toward Negative Infinity See detail

vec_roundp Vector Round toward Positive Infinity See detail

vec_roundz Vector Round toward Zero See detail

vec_signed Vector Convert double to signed long long See detail

vec_trunc Vector Truncate See detail

vec_unsigned Vector Convert double to unsigned long long See detail

52 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

Test

Table 52. Vector built-in functions for testing

Function name Short name description
More
information

vec_fp_test_data_class Vector Floating-Point Test Data Class See detail

vec_test_mask Vector Test under Mask See detail

All Predicates

Table 53. Vector built-in functions for searching and comparing all elements

Function name Short name description
More
information

vec_all_eq All Elements Equal See detail

vec_all_ge All Elements Greater Than or Equal See detail

vec_all_gt All Elements Greater Than See detail

vec_all_le All Elements Less Than or Equal See detail

vec_all_lt All Elements Less Than See detail

vec_all_nan All Elements Not a Number See detail

vec_all_ne All Elements Not Equal See detail

vec_all_nge All Elements Not Greater Than or Equal See detail

vec_all_ngt All Elements Not Greater Than See detail

vec_all_nle All Elements Not Less Than or Equal See detail

vec_all_nlt All Elements Not Less Than See detail

vec_all_numeric All Elements Numeric See detail

Any Predicates

Table 54. Vector built-in functions for searching and comparing any elements

Function name Short name description
More
information

vec_any_eq Any Element Equal See detail

vec_any_ge Any Element Greater Than or Equal See detail

vec_any_gt Any Element Greater Than See detail

vec_any_le Any Element Less Than or Equal See detail

vec_any_lt Any Element Less Than See detail

vec_any_nan Any Element Not a Number See detail

vec_any_ne Any Element Not Equal See detail

vec_any_nge Any Element Not Greater Than or Equal See detail

vec_any_ngt Any Element Not Greater Than See detail

vec_any_nle Any Element Not Less Than or Equal See detail

Chapter 3. Using vector programming support 53

Table 54. Vector built-in functions for searching and comparing any elements (continued)

Function name Short name description
More
information

vec_any_nlt Any Element Not Less Than See detail

vec_any_numeric Any Element Numeric See detail

Arithmetic
This section describes built-in functions for arithmetic.

vec_abs: Vector Absolute Value

d = vec_abs(a)

Returns a vector containing the absolute values of the contents of the given vector. The value of each
element of the result is the absolute value of the corresponding element of a.

Note: vector float and vector double will not cause IEEE exception.

Table 55. Vector Absolute Value

d a MIN ARCH

vector signed char vector signed char ARCH(11) 1

vector signed short vector signed short ARCH(11) 1

vector signed int vector signed int ARCH(11) 1

vector signed long long vector signed long long ARCH(11) 1

vector float vector float ARCH(12) 1

vector double vector double ARCH(11) 1

Note:

1. This prototype has the exact same semantics as that in the OpenPOWER ABI for
Linux Supplement for the Power Architecture 64-bit ELF V2 ABI, Revision 1.4.

vec_add_u128: Vector Add unsigned 128-bits

d = vec_add_u128(a, b)

Adds unsigned quadword values.

The function operates on vectors as 128-bit unsigned integers. It returns low 128 bits of a + b.

Table 56. Vector Add unsigned 128-bits

d a b MIN ARCH

vector unsigned char vector unsigned char vector unsigned char ARCH(11)

vec_addc: Vector Add Carryout

d = vec_addc(a, b)

Returns a vector containing the carry produced by adding each set of corresponding elements of the given
vectors.

Each resulting element is set to 1 if there is a carry, and 0 otherwise.

54 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

Table 57. Vector Add Carryout

d a b MIN ARCH

vector unsigned char vector unsigned char vector unsigned char ARCH(11)

vector unsigned short vector unsigned short vector unsigned short ARCH(11)

vector unsigned int vector unsigned int vector unsigned int ARCH(11) 1

vector unsigned long long vector unsigned long long vector unsigned long long ARCH(11)

Note:

1. This prototype has the exact same semantics as that in the OpenPOWER ABI for
Linux Supplement for the Power Architecture 64-bit ELF V2 ABI, Revision 1.4.

vec_addc_u128: Vector Add Compute Carryout unsigned 128-bits

d = vec_addc_u128(a, b)

Gets the carry bit of the 128-bit addition of two quadword values.

This function operates on the vectors as 128-bit unsigned integers. It returns the carry out of a + b.

If there is a carry on the addition, the bit 127 of d is set to 1; otherwise it is set to 0. All other bits of d are
0.

Table 58. Vector Add Compute Carryout unsigned 128-bits

d a b MIN ARCH

vector unsigned char vector unsigned char vector unsigned char ARCH(11)

vec_adde_u128: Vector Add With Carry unsigned 128-bits

d = vec_adde_u128(a, b, c)

Adds unsigned quadword values with carry bit from the previous operation.

This function operates on the vectors as 128-bit unsigned integers. It returns low 128 bits of a + b +
(c & 1).

Note: Only the carry bit (127-bit) of c is used, and the other bits are ignored.

Table 59. Vector Add With Carry unsigned 128-bits

d a b c MIN ARCH

vector unsigned char vector unsigned char vector unsigned char vector unsigned char ARCH(11)

vec_addec_u128: Vector Add With Carry Compute Carry unsigned 128-bits

d = vec_addec_u128(a, b, c)

Gets the carry bit of the 128-bit addition of two quadword values with carry bit from a previous operation.

This function operates on the vectors as 128-bit unsigned integers. It returns the carry out of a + b +
(c & 1).

If there is a carry on this addition, the 127-bit of d is 1, otherwise 0. All other bits of d are 0.

Note: Only the carry bit (127-bit) of c is used, and the other bits are ignored.

Chapter 3. Using vector programming support 55

Table 60. Vector Add With Carry Compute Carry unsigned 128-bits

d a b c MIN ARCH

vector unsigned char vector unsigned char vector unsigned char vector unsigned char ARCH(11)

vec_avg: Vector Average

d = vec_avg(a, b)

Returns a vector containing the average of each set of the corresponding elements of the given vectors.

Table 61. Vector Average

d a b MIN ARCH

vector signed char vector signed char vector signed char ARCH(11) 1

vector signed short vector signed short vector signed short ARCH(11) 1

vector signed int vector signed int vector signed int ARCH(11) 1

vector signed long long vector signed long long vector signed long long ARCH(11)

vector unsigned char vector unsigned char vector unsigned char ARCH(11) 1

vector unsigned short vector unsigned short vector unsigned short ARCH(11) 1

vector unsigned int vector unsigned int vector unsigned int ARCH(11) 1

vector unsigned long long vector unsigned long long vector unsigned long long ARCH(11)

Note:

1. This prototype has the exact same semantics as that in the OpenPOWER ABI for
Linux Supplement for the Power Architecture 64-bit ELF V2 ABI, Revision 1.4.

vec_checksum: Vector Checksum

d = vec_checksum(a, b)

Returns a vector with the 1-indexed element containing a checksum computed from the summation of all
vector elements in a and the 1-indexed element of b. All other vector elements will be 0.

Table 62. Vector Checksum

d a b MIN ARCH

vector unsigned int vector unsigned int vector unsigned int ARCH(11)

vec_gfmsum: Vector Galois Field Multiply Sum

d = vec_gfmsum(a, b)

Performs a Galois field multiply sum on each element of the given vectors.

Each element of a is multiplied in a Galois field with the corresponding element of b. The Galois field has
an order of two. This multiplication is similar to standard binary multiplication, but instead of adding the
shifted multiplicand it is exclusive ORed. The resulting even-odd pairs of double element-sized products
are exclusive ORed with each other and placed in the corresponding double-wide element of the returned
vector.

56 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

Table 63. Vector Galois Field Multiply Sum

d a b MIN ARCH

vector unsigned short vector unsigned char vector unsigned char ARCH(11)

vector unsigned int vector unsigned short vector unsigned short ARCH(11)

vector unsigned long long vector unsigned int vector unsigned int ARCH(11)

vec_gfmsum_128: Vector Galois Field Multiply Sum 128-bits

d = vec_gfmsum_128(a, b)

Performs a Galois field multiply sum on the 2 elements of the given vectors.

Each element of a is multiplied in a Galois field with the corresponding element of b. The Galois field has
an order of two. This multiplication is similar to standard binary multiplication, but instead of adding the
shifted multiplicand it is exclusive ORed. The resulting 128-bits products are exclusive ORed with each
other and return as a vector unsigned char.

Table 64. Vector Galois Field Multiply Sum 128-bits

d a b MIN ARCH

vector unsigned char vector unsigned long long vector unsigned long long ARCH(11)

vec_gfmsum_accum: Vector Galois Field Multiply Sum and Accumulate

d = vec_gfmsum_accum(a, b, c)

Performs a Galois field multiply sum and accumulate on each element of the given vectors.

Each element of a is multiplied in a Galois field with the corresponding element of b. The Galois field has
an order of two. This multiplication is similar to standard binary multiplication, but instead of adding the
shifted multiplicand it is exclusive ORed. The resulting even-odd pairs of double element-sized products
are exclusive ORed with each other and exclusive ORed with the corresponding double-wide element of
c, and returned by the function.

Table 65. Vector Galois Field Multiply Sum and Accumulate

d a b c MIN ARCH

vector unsigned
short

vector unsigned char vector unsigned char vector unsigned
short

ARCH(11)

vector unsigned int vector unsigned
short

vector unsigned
short

vector unsigned int ARCH(11)

vector unsigned long
long

vector unsigned int vector unsigned int vector unsigned long
long

ARCH(11)

vec_gfmsum_accum_128: Vector Galois Field Multiply Sum and Accumulate 128-bits

d = vec_gfmsum_accum_128(a, b, c)

Performs a Galois field multiply sum and accumulate on the 2 elements of the given vectors.

Each element of a is multiplied in a Galois field with the corresponding element of b. The Galois field has
an order of two. This multiplication is similar to standard binary multiplication, but instead of adding the
shifted multiplicand it is exclusive ORed. The resulting 128-bits products are exclusive ORed with each
other and exclusive ORed with the 128-bits c, and returned by the function.

Chapter 3. Using vector programming support 57

Table 66. Vector Galois Field Multiply Sum and Accumulate 128-bits

d a b c MIN ARCH

vector unsigned char vector unsigned long
long

vector unsigned long
long

vector unsigned char ARCH(11)

vec_madd: Vector Multiply Add

d = vec_madd(a, b, c)

Returns a vector containing the results of performing a fused multiply-add operation for each
corresponding set of elements of the given vectors. The value of each element of the result is the product
of the values of the corresponding elements of a and b, added to the value of the corresponding element
of c.

Table 67. Vector Multiply Add

d a b c MIN ARCH

vector float vector float vector float vector float ARCH(12) 1

vector double vector double vector double vector double ARCH(11) 1

Note:

1. This prototype has the exact same semantics as that in the OpenPOWER ABI for
Linux Supplement for the Power Architecture 64-bit ELF V2 ABI, Revision 1.4.

vec_max: Vector Maximum

d = vec_max(a, b)

Returns a vector containing the maximum value from each set of corresponding elements of the given
vectors. The value of each element of the result is the maximum of the values of the corresponding
elements of a and b.

This function emulates the operation on vector double under ARCH(11).

Note: The emulation is done as(a>b)?a:b, which is sightly different from the IEEE semantics. For
details, see the results tables for performing the "C-Style Max Macro" and IEEE MaxNum on the VECTOR
FP MAXIMUM (VFMAX) instruction in z/Architecture Principles of Operation.

Table 68. Vector Maximum

d a b MIN ARCH

vector signed char vector signed char vector signed char ARCH(11) 1

vector unsigned char vector unsigned char vector unsigned char ARCH(11) 1

vector signed short vector signed short vector signed short ARCH(11) 1

vector unsigned short vector unsigned short vector unsigned short ARCH(11) 1

vector signed int vector signed int vector signed int ARCH(11) 1

vector unsigned int vector unsigned int vector unsigned int ARCH(11) 1

vector signed long long vector signed long long vector signed long long ARCH(11) 1

vector unsigned long long vector unsigned long long vector unsigned long long ARCH(11) 1

vector float vector float vector float ARCH(12) 1

58 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

Table 68. Vector Maximum (continued)

d a b MIN ARCH

vector double vector double vector double ARCH(11) 1

Note:

1. This prototype has the exact same semantics as that in the OpenPOWER ABI for
Linux Supplement for the Power Architecture 64-bit ELF V2 ABI, Revision 1.4.

vec_meadd: Vector Multiply and Add Even

d = vec_meadd(a, b, c)

Returns a vector containing double element-sized results of performing a multiply-and-add operation for
each of the even-indexed elements on the given vectors. The value of each element of d is the result of
adding the corresponding element of c to the double element-sized product of the even-indexed
elements of a and b.

Figure 7. Multiply and add even of integer elements (32-bit)

Table 69. Vector Multiply and Add Even

d a b c MIN ARCH

vector unsigned
short

vector unsigned char vector unsigned char vector unsigned
short

ARCH(11)

vector signed short vector signed char vector signed char vector signed short ARCH(11)

vector unsigned int vector unsigned
short

vector unsigned
short

vector unsigned int ARCH(11)

vector signed int vector signed short vector signed short vector signed int ARCH(11)

vector unsigned long
long

vector unsigned int vector unsigned int vector unsigned long
long

ARCH(11)

vector signed long
long

vector signed int vector signed int vector signed long
long

ARCH(11)

Chapter 3. Using vector programming support 59

vec_mhadd: Vector Multiply and Add High

d = vec_mhadd(a, b, c)

Returns a vector containing the most significant ("high") half of the double element-sized results of
performing a multiply-and-add operation for each corresponding set of elements of the given vectors. The
value of each element of the result is the value of the most significant half of the double element-sized of
the product of the values of the corresponding elements of a and b, added to the value of the
corresponding element of c.

Figure 8. Multiply and add high of integer elements (32-bit)

Table 70. Vector Multiply and Add High

d a b c MIN ARCH

vector unsigned char vector unsigned char vector unsigned char vector unsigned char ARCH(11)

vector signed char vector signed char vector signed char vector signed char ARCH(11)

vector unsigned
short

vector unsigned
short

vector unsigned
short

vector unsigned
short

ARCH(11)

vector signed short vector signed short vector signed short vector signed short ARCH(11)

vector unsigned int vector unsigned int vector unsigned int vector unsigned int ARCH(11)

vector signed int vector signed int vector signed int vector signed int ARCH(11)

vec_min: Vector Minimum

d = vec_min(a, b)

60 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

Returns a vector containing the minimum value from each set of corresponding elements of the given
vectors. The value of each element of the result is the minimum of the values of the corresponding
elements of a and b.

This function emulates the operation on vector double under ARCH(11).

Note: The emulation is done as !(b<a)?a:b, which is sightly different from the IEEE semantics. For
details, see the results tables for performing the IEEE MaxNum on the VECTOR FP MAXIMUM (VFMAX)
instruction in z/Architecture Principles of Operation.

Table 71. Vector Minimum

d a b MIN ARCH

vector signed char vector signed char vector signed char ARCH(11) 1

vector unsigned char vector unsigned char vector unsigned char ARCH(11) 1

vector signed short vector signed short vector signed short ARCH(11) 1

vector unsigned short vector unsigned short vector unsigned short ARCH(11) 1

vector signed int vector signed int vector signed int ARCH(11) 1

vector unsigned int vector unsigned int vector unsigned int ARCH(11) 1

vector signed long long vector signed long long vector signed long long ARCH(11) 1

vector unsigned long long vector unsigned long long vector unsigned long long ARCH(11) 1

vector float vector float vector float ARCH(12) 1

vector double vector double vector double ARCH(11) 1

Note:

1. This prototype has the exact same semantics as that in the OpenPOWER ABI for
Linux Supplement for the Power Architecture 64-bit ELF V2 ABI, Revision 1.4.

vec_mladd: Vector Multiply and Add Low

d = vec_mladd(a, b, c)

Returns a vector containing the least significant ("low") half of the double element-sized results of
performing a multiply-and-add operation for each corresponding set of elements of the given vectors. The
value of each element of the result is the value of the least significant half of the double element-sized of
the product of the values of the corresponding elements of a and b, added to the value of the
corresponding element of c.

Chapter 3. Using vector programming support 61

Figure 9. Multiply and add low of integer elements (32-bit)

Table 72. Vector Multiply and Add Low

d a b c MIN ARCH

vector unsigned char vector unsigned char vector unsigned char vector unsigned char ARCH(11)

vector signed char vector unsigned char vector signed char vector signed char ARCH(11)

vector signed char vector unsigned char vector unsigned char ARCH(11)

vector signed char vector signed char vector signed char ARCH(11)

vector unsigned
short

vector unsigned
short

vector unsigned
short

vector unsigned
short

ARCH(11) 1

vector signed short vector unsigned
short

vector signed short vector signed short ARCH(11) 1

vector signed short vector unsigned
short

vector unsigned
short

ARCH(11) 1

vector signed short vector signed short vector signed short ARCH(11) 1

vector unsigned int vector unsigned int vector unsigned int vector unsigned int ARCH(11)

vector signed int vector unsigned int vector signed int vector signed int ARCH(11)

vector signed int vector unsigned int vector unsigned int ARCH(11)

vector signed int vector signed int vector signed int ARCH(11)

62 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

Table 72. Vector Multiply and Add Low (continued)

d a b c MIN ARCH

Note:

1. This prototype has the exact same semantics as that in the OpenPOWER ABI for
Linux Supplement for the Power Architecture 64-bit ELF V2 ABI, Revision 1.4.

vec_moadd: Vector Multiply and Add Odd

d = vec_moadd(a, b, c)

Returns a vector containing a double element-sized results of performing a multiply-and-add operation
for each of the odd-indexed elements on the given vectors. The value of each element is the value of the
double element-sized of the product of the values of the odd-indexed elements of a and b, added to the
value of the corresponding element of c.

Figure 10. Multiply and add odd of integer elements (32-bit)

Table 73. Vector Multiply and Add Odd

d a b c MIN ARCH

vector unsigned
short

vector unsigned char vector unsigned char vector unsigned
short

ARCH(11)

vector signed short vector signed char vector signed char vector signed short ARCH(11)

vector unsigned int vector unsigned
short

vector unsigned
short

vector unsigned int ARCH(11)

vector signed int vector signed short vector signed short vector signed int ARCH(11)

vector unsigned long
long

vector unsigned int vector unsigned int vector unsigned long
long

ARCH(11)

vector signed long
long

vector signed int vector signed int vector signed long
long

ARCH(11)

Chapter 3. Using vector programming support 63

vec_msub: Vector Multiply Subtract

d = vec_msub(a, b, c)

Returns a vector containing the results of performing a multiply-subtract operation using the given
vectors. This function multiplies each element in a by the corresponding element in b, and then subtracts
the corresponding element in c from the result.

Table 74. Vector Multiply Subtract

d a b c MIN ARCH

vector float vector float vector float vector float ARCH(12) 1

vector double vector double vector double vector double ARCH(11) 1

Note:

1. This prototype has the exact same semantics as that in the OpenPOWER ABI for
Linux Supplement for the Power Architecture 64-bit ELF V2 ABI, Revision 1.4.

vec_msum_u128: Vector Multiply Sum Logical

e = vec_msum_u128(a, b, c, d)

Returns a vector that contains a 128-bit unsigned integer, which is the sum of the following values:

• The 128-bit product of the 0-index elements of vector a and b. If d equals 8 or 12, the product is
multiplied by 2. If d equals 0, the product remains the same.

• The 128-bit product of the 1-index elements of vector a and b. If d equals 4 or 12, the product is
multiplied by 2. If d equals 0, the product remains the same.

• Vector c as a 128-bit unsigned integer.

64 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

Figure 11. Multiply and sum with optional multiplication by 2

Table 75. Vector Multiply Sum Logical

e a b c d MIN ARCH

vector unsigned
char

vector unsigned
long long

vector unsigned
long long

vector unsigned
char

0, 4, 8, 12 ARCH(12)

vec_mule: Vector Multiply Even

d = vec_mule(a, b)

Returns a vector containing the results of performing a multiply operation for each corresponding set of
even-indexed elements of the given vectors, and extended to double element size.

Chapter 3. Using vector programming support 65

Figure 12. Even multiply of 4 integer elements (16-bit)

Table 76. Vector Multiply Even

d a b MIN ARCH

vector unsigned short vector unsigned char vector unsigned char ARCH(11) 1

vector signed short vector signed char vector signed char ARCH(11) 1

vector unsigned int vector unsigned short vector unsigned short ARCH(11) 1

vector signed int vector signed short vector signed short ARCH(11) 1

vector unsigned long long vector unsigned int vector unsigned int ARCH(11) 1

vector signed long long vector signed int vector signed int ARCH(11) 1

Note:

1. This prototype has the exact same semantics as that in the OpenPOWER ABI for
Linux Supplement for the Power Architecture 64-bit ELF V2 ABI, Revision 1.4.

vec_mulh: Vector Multiply High

d = vec_mulh(a, b)

Returns a vector containing the most significant ("high") half of results of performing a multiply operation
using the given vectors. This function multiplies corresponding elements in the given vectors, the most
significant half of the double element-sized product is assigned to the result of the corresponding
elements in the result vector.

Table 77. Vector Multiply High

d a b MIN ARCH

vector unsigned char vector unsigned char vector unsigned char ARCH(11)

vector signed char vector signed char vector signed char ARCH(11)

vector unsigned short vector unsigned short vector unsigned short ARCH(11)

vector signed short vector signed short vector signed short ARCH(11)

vector unsigned int vector unsigned int vector unsigned int ARCH(11)

vector signed int vector signed int vector signed int ARCH(11)

66 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

vec_mulo: Vector Multiply Odd

d = vec_mulo(a, b)

Returns a vector containing the results of performing a multiply operation for each corresponding set of
odd-indexed elements of the given vectors, and extended to double element size.

Figure 13. Odd multiply of 4 integer elements (16-bit)

Table 78. Vector Multiply Odd

d a b MIN ARCH

vector unsigned short vector unsigned char vector unsigned char ARCH(11) 1

vector signed short vector signed char vector signed char ARCH(11) 1

vector unsigned int vector unsigned short vector unsigned short ARCH(11) 1

vector signed int vector signed short vector signed short ARCH(11) 1

vector unsigned long long vector unsigned int vector unsigned int ARCH(11) 1

vector signed long long vector signed int vector signed int ARCH(11) 1

Note:

1. This prototype has the exact same semantics as that in the OpenPOWER ABI for
Linux Supplement for the Power Architecture 64-bit ELF V2 ABI, Revision 1.4.

vec_nabs: Vector Negative Absolute

d = vec_nabs(a)

Returns a vector containing the results of performing a negative-absolute operation using the given
vector. This function computes the absolute value of each element in the given vector and then assigns
the negated value of the result to the corresponding elements in the result vector.

Note: This built-in function will not cause IEEE exception.

Table 79. Vector Negative Absolute

d a MIN ARCH

vector float vector float ARCH(12) 1

vector double vector double ARCH(11) 1

Chapter 3. Using vector programming support 67

Table 79. Vector Negative Absolute (continued)

d a MIN ARCH

Note:

1. This prototype has the exact same semantics as that in the OpenPOWER ABI for
Linux Supplement for the Power Architecture 64-bit ELF V2 ABI, Revision 1.4.

vec_nmadd: Vector Negative Multiply Add

d = vec_nmadd(a, b, c)

Returns a vector containing the results of performing a negative multiply-add operation on the given
vectors. The value of each element of d is the product of the corresponding elements of a and b, added to
the corresponding elements of c, and then multiplied by -1.0.

Table 80. Vector Negative Multiply Add

d a b c MIN ARCH

vector float vector float vector float vector float ARCH(12) 1

vector double vector double vector double vector double ARCH(12) 1

Note:

1. This prototype has the exact same semantics as that in the OpenPOWER ABI for
Linux Supplement for the Power Architecture 64-bit ELF V2 ABI, Revision 1.4.

vec_nmsub: Vector Negative Multiply Subtract

d = vec_nmsub(a, b, c)

Returns a vector containing the results of performing a negative multiply-subtract operation on the given
vectors. The value of each element of d is the product of the corresponding elements of a and b,
subtracted by the corresponding elements of c, and then multiplied by -1.0.

Table 81. Vector Negative Multiply Subtract

d a b c MIN ARCH

vector float vector float vector float vector float ARCH(12) 1

vector double vector double vector double vector double ARCH(12) 1

Note:

1. This prototype has the exact same semantics as that in the OpenPOWER ABI for
Linux Supplement for the Power Architecture 64-bit ELF V2 ABI, Revision 1.4.

vec_sqrt: Vector Square Root

d = vec_sqrt(a)

Returns a vector containing the square root of each element in the given vector.

Table 82. Vector Square Root

d a MIN ARCH

vector float vector float ARCH(12) 1

68 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

Table 82. Vector Square Root (continued)

d a MIN ARCH

vector double vector double ARCH(11) 1

Note:

1. This prototype has the exact same semantics as that in the OpenPOWER ABI for
Linux Supplement for the Power Architecture 64-bit ELF V2 ABI, Revision 1.4.

vec_sub_u128: Vector Subtract unsigned 128-bits

d = vec_sub_u128(a, b)

Subtracts unsigned quadword values.

This function operates on the vectors as 128-bit unsigned integers. It returns low 128 bits of a - b.

Table 83. Vector Subtract unsigned 128-bits

d a b MIN ARCH

vector unsigned char vector unsigned char vector unsigned char ARCH(11)

vec_subc: Vector Subtract Carryout

d = vec_subc(a, b)

Returns a vector containing the borrow produced by subtracting each of corresponding elements of b
from a.

On each resulting element, the value is 0 if a borrow occurred, or 1 if no borrow occurred.

Table 84. Vector Subtract Carryout

d a b MIN ARCH

vector unsigned char vector unsigned char vector unsigned char ARCH(11)

vector unsigned short vector unsigned short vector unsigned short ARCH(11)

vector unsigned int vector unsigned int vector unsigned int ARCH(11) 1

vector unsigned long long vector unsigned long long vector unsigned long long ARCH(11)

Note:

1. This prototype has the exact same semantics as that in the OpenPOWER ABI for
Linux Supplement for the Power Architecture 64-bit ELF V2 ABI, Revision 1.4.

vec_subc_u128: Vector Subtract Carryout unsigned 128-bits

d = vec_subc_u128(a, b)

Gets the carry bit of the 128-bit subtraction of two quadword values.

This function operates on the vectors as 128-bit unsigned integers. It returns a vector containing the
borrow produced by subtracting b from a, as unsigned 128-bits integers.

If no borrow occurred, the bit 127 of d is 1; otherwise it is set to 0. All other bits of d are 0.

Chapter 3. Using vector programming support 69

Table 85. Vector Subtract Carryout unsigned 128-bits

d a b MIN ARCH

vector unsigned char vector unsigned char vector unsigned char ARCH(11)

vec_sube_u128: Vector Subtract with Carryout

d = vec_sube_u128(a, b, c)

Subtracts unsigned quadword values with carry bit from a previous operation.

This function operates on the vectors as 128-bit unsigned integers. It returns a vector containing the
result of subtracting of b from a, and the carryout bit from a previous operation.

Note: Only the borrow indication bit (127-bit) of c is used, and the other bits are ignored.

Table 86. Vector Subtract with Carryout

d a b c MIN ARCH

vector unsigned char vector unsigned char vector unsigned char vector unsigned char ARCH(11)

vec_subec_u128: Vector Subtract with Carryout, Carryout

d = vec_subec_u128(a, b, c)

Gets the carry bit of the 128-bit subtraction of two quadword values with carry bit from the previous
operation.

It returns a vector containing the carryout produced from the result of subtracting of b from a, and the
carryout bit from a previous operation. If no borrow occurred, the 127-bit of d is 1, otherwise 0. All other
bits of d are 0.

Note: Only the borrow indication bit (127-bit) of c is used, and the other bits are ignored.

Table 87. Vector Subtract with Carryout, Carryout

d a b c MIN ARCH

vector unsigned char vector unsigned char vector unsigned char vector unsigned char ARCH(11)

vec_sum_u128: Vector Sum Across Quadword

d = vec_sum_u128(a, b)

Returns a vector containing the results of performing a sum across all the elements in each of the
quadword of vector a, and the rightmost word or doubleword element of the b. The result is an unsigned
128-bit integer. The result vector is obtained as follow:

For vector unsigned int operands:

d = a[0] + a[1] + a[2] + a[3] + b[3]

For vector unsigned long long operands:

d = a[0] + a[1] + b[1]

Table 88. Vector Sum Across Quadword

d a b MIN ARCH

vector unsigned char vector unsigned int vector unsigned int ARCH(11)

vector unsigned long long vector unsigned long long ARCH(11)

70 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

vec_sum2: Vector Sum Across Doubleword

d = vec_sum2(a, b)

Returns a vector containing the results of performing a sum across all the elements in each of the
doubleword of vector a, and the rightmost sub-element of the corresponding doubleword of b.

Figure 14. Sum across doubleword of unsigned integer elements (32-bit)

The result vector is obtained as follows:

For vector unsigned short operands:

d[0] = a[0] + a[1] + a[2] + a[3] + b[3]
d[1] = a[4] + a[5] + a[6] + a[7] + b[7]

For vector unsigned int operands:

d[0] = a[0] + a[1] + b[1]
d[1] = a[2] + a[3] + b[3]

Table 89. Vector Sum Across Doubleword

d a b MIN ARCH

vector unsigned long long vector unsigned short vector unsigned short ARCH(11)

vector unsigned int vector unsigned int ARCH(11)

vec_sum4: Vector Sum Across Word

d = vec_sum4(a, b)

Returns a vector containing the results of performing a sum across all the elements in each of the word of
vector a, and the rightmost sub-element of the corresponding word of b.

Chapter 3. Using vector programming support 71

Figure 15. Sum across word of unsigned short elements (16-bit)

The result vector is obtained as follow:

For vector unsigned char operands:

d[0] = a[0] + a[1] + a[2] + a[3] + b[3]
d[1] = a[4] + a[5] + a[6] + a[7] + b[7]
d[2] = a[8] + a[8] + a[10] + a[11] + b[11]
d[3] = a[12] + a[13] + a[14] + a[15] + b[15]

For vector unsigned short operands:

d[0] = a[0] + a[1] + b[1]
d[1] = a[2] + a[3] + b[3]
d[2] = a[4] + a[5] + b[5]
d[3] = a[6] + a[7] + b[7]

Table 90. Vector Sum Across Word

d a b MIN ARCH

vector unsigned int vector unsigned char vector unsigned char ARCH(11)

vector unsigned short vector unsigned short ARCH(11)

Compare
This section describes vector built-in functions for comparing elements.

vec_cmpeq: Vector Compare Equal

d = vec_cmpeq(a, b)

Returns a vector containing the results of comparing each set of corresponding elements of the given
vectors for equality. For each element of the result, the value of each bit is 1 if the corresponding
elements of a and b are equal. Otherwise, the value of each bit is 0.

Table 91. Vector Compare Equal

d a b MIN ARCH

vector bool char vector bool char vector bool char ARCH(11) 1

vector signed char vector signed char ARCH(11) 1

vector unsigned char vector unsigned char ARCH(11) 1

72 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

Table 91. Vector Compare Equal (continued)

d a b MIN ARCH

vector bool short vector bool short vector bool short ARCH(11) 1

vector signed short vector signed short ARCH(11) 1

vector unsigned short vector unsigned short ARCH(11) 1

vector bool int vector bool int vector bool int ARCH(11) 1

vector signed int vector signed int ARCH(11) 1

vector unsigned int vector unsigned int ARCH(11) 1

vector float vector float ARCH(12) 1

vector bool long long vector bool long long vector bool long long ARCH(11) 1

vector signed long long vector signed long long ARCH(11) 1

vector unsigned long long vector unsigned long long ARCH(11) 1

vector double vector double ARCH(11) 1

Note:

1. This prototype has the exact same semantics as that in the OpenPOWER ABI for
Linux Supplement for the Power Architecture 64-bit ELF V2 ABI, Revision 1.4.

Note: vec_cmpne is available on the XL C/C++ compilers for some other platforms. You can define the
following macro to migrate programs from other platforms to the Enterprise Metal C for z/OS compiler.

#define vec_cmpne(a, b) (~vec_cmpeq(a,b))

vec_cmpeq_idx: Vector Compare Equal Index

d = vec_cmpeq_idx(a, b)

Returns the lowest byte-index of comparing each set of corresponding elements of the given vectors for
equality. If the two vectors are not equal, the result is 16.

The result is placed into byte element seven of the returned vector, and all other bytes are set to 0.

Table 92. Vector Compare Equal Index

d a b MIN ARCH

vector signed char vector signed char vector signed char ARCH(11)

vector unsigned char vector bool char vector bool char ARCH(11)

vector unsigned char vector unsigned char ARCH(11)

vector signed short vector signed short vector signed short ARCH(11)

vector unsigned short vector bool short vector bool short ARCH(11)

vector unsigned short vector unsigned short ARCH(11)

vector signed int vector signed int vector signed int ARCH(11)

vector unsigned int vector bool int vector bool int ARCH(11)

vector unsigned int vector unsigned int ARCH(11)

Chapter 3. Using vector programming support 73

vec_cmpeq_idx_cc: Vector Compare Equal Index with Condition Code

d = vec_cmpeq_idx_cc(a, b, c)

Returns the lowest byte-index of comparing each set of corresponding elements of the given vectors for
equality. If the two vectors are not equal, the result is 16. c is set to 1, if there is any elements of a equals
the corresponding element of b, otherwise c is set to 3.

The result is placed into byte element seven of the returned vector, and all other bytes are set to 0.

Table 93. Vector Compare Equal Index with Condition Code

d a b c MIN ARCH

vector signed char vector signed char vector signed char int * ARCH(11)

vector unsigned char vector bool char vector bool char ARCH(11)

vector unsigned char vector unsigned char ARCH(11)

vector signed short vector signed short vector signed short ARCH(11)

vector unsigned short vector bool short vector bool short ARCH(11)

vector unsigned short vector unsigned short ARCH(11)

vector signed int vector signed int vector signed int ARCH(11)

vector unsigned int vector bool int vector bool int ARCH(11)

vector unsigned int vector unsigned int ARCH(11)

vec_cmpeq_or_0_idx: Vector Compare Equal or Zero Index

d = vec_cmpeq_or_0_idx(a, b)

Returns the lowest byte-index of comparing each set of corresponding elements of the given vectors for
equality, and comparing each elements of a against 0. If the two vectors are not equal, and no elements
of a is 0, the result is 16.

The result is placed into byte element seven of the returned vector, and all other bytes are set to 0.

Table 94. Vector Compare Equal or Zero Index

d a b MIN ARCH

vector signed char vector signed char vector signed char ARCH(11)

vector unsigned char vector bool char vector bool char ARCH(11)

vector unsigned char vector unsigned char ARCH(11)

vector signed short vector signed short vector signed short ARCH(11)

vector unsigned short vector bool short vector bool short ARCH(11)

vector unsigned short vector unsigned short ARCH(11)

vector signed int vector signed int vector signed int ARCH(11)

vector unsigned int vector bool int vector bool int ARCH(11)

vector unsigned int vector unsigned int ARCH(11)

vec_cmpeq_or_0_idx_cc: Vector Compare Equal or Zero Index with Condition Code

d = vec_cmpeq_or_0_idx_cc(a, b, c)

74 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

Returns the lowest byte-index of comparing each set of corresponding elements of the given vectors for
equality, and comparing each elements of a against 0. If the two vectors are not equal, and no elements
of a is 0, the result is 16.

c would be set to one of the following values:

• 0 - if no elements of the 2 vectors are equal, and at least one element from a with a value of 0.
• 1 - if at least one element of a equals the corresponding element of b, and no elements of a has a value

of 0.
• 2 - if at least one element of a equals the corresponding element of b with an equal value, and there is

at least one element from a has a value of 0.
• 3 - if no element of a equals the corresponding element of b, and there is no element from a with a

value of 0.

The result is placed into byte element seven of the returned vector, and all other bytes are set to 0.

Table 95. Vector Compare Equal or Zero Index with Condition Code

d a b c MIN ARCH

vector signed char vector signed char vector signed char int * ARCH(11)

vector unsigned char vector bool char vector bool char ARCH(11)

vector unsigned char vector unsigned char ARCH(11)

vector signed short vector signed short vector signed short ARCH(11)

vector unsigned short vector bool short vector bool short ARCH(11)

vector unsigned short vector unsigned short ARCH(11)

vector signed int vector signed int vector signed int ARCH(11)

vector unsigned int vector bool int vector bool int ARCH(11)

vector unsigned int vector unsigned int ARCH(11)

vec_cmpge: Vector Compare Greater Than or Equal

d = vec_cmpge(a, b)

Returns a vector containing the results of a greater-than-or-equal-to comparison between each set of
corresponding elements of the given vectors. For each element of the result, the value of each bit is 1 if
the value of the corresponding element of a is greater than or equal to the value of the corresponding
element of b. Otherwise, the value of each bit is 0.

This function emulates the operation on the integer vectors.

Table 96. Vector Compare Greater Than or Equal

d a b MIN ARCH

vector bool char vector signed char vector signed char ARCH(11) 1

vector unsigned char vector unsigned char ARCH(11) 1

vector bool short vector signed short vector signed short ARCH(11) 1

vector unsigned short vector unsigned short ARCH(11) 1

vector bool int vector signed int vector signed int ARCH(11) 1

vector unsigned int vector unsigned int ARCH(11) 1

vector float vector float ARCH(12) 1

Chapter 3. Using vector programming support 75

Table 96. Vector Compare Greater Than or Equal (continued)

d a b MIN ARCH

vector bool long long vector signed long long vector signed long long ARCH(11) 1

vector unsigned long long vector unsigned long long ARCH(11) 1

vector double vector double ARCH(11) 1

Note:

1. This prototype has the exact same semantics as that in the OpenPOWER ABI for
Linux Supplement for the Power Architecture 64-bit ELF V2 ABI, Revision 1.4.

vec_cmpgt: Vector Compare Greater Than

d = vec_cmpgt(a, b)

Returns a vector containing the results of a greater-than comparison between each set of corresponding
elements of the given vectors. For each element of the result, the value of each bit is 1 if the value of the
corresponding element of a is greater than the value of the corresponding element of b. Otherwise, the
value of each bit is 0.

Table 97. Vector Compare Greater Than

d a b MIN ARCH

vector bool char vector signed char vector signed char ARCH(11) 1

vector unsigned char vector unsigned char ARCH(11) 1

vector bool short vector signed short vector signed short ARCH(11) 1

vector unsigned short vector unsigned short ARCH(11) 1

vector bool int vector signed int vector signed int ARCH(11) 1

vector unsigned int vector unsigned int ARCH(11) 1

vector float vector float ARCH(12) 1

vector bool long long vector signed long long vector signed long long ARCH(11) 1

vector unsigned long long vector unsigned long long ARCH(11) 1

vector double vector double ARCH(11) 1

Note:

1. This prototype has the exact same semantics as that in the OpenPOWER ABI for
Linux Supplement for the Power Architecture 64-bit ELF V2 ABI, Revision 1.4.

vec_cmple: Vector Compare Less Than or Equal

d = vec_cmple(a, b)

Returns a vector containing the results of a less-than-or-equal-to comparison between each set of
corresponding elements of the given vectors. For each element of the result, the value of each bit is 1 if
the value of the corresponding element of a is less than or equal to the value of the corresponding
element of b. Otherwise, the value of each bit is 0.

76 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

Table 98. Vector Compare Less Than or Equal

d a b MIN ARCH

vector bool char vector signed char vector signed char ARCH(11) 1

vector unsigned char vector unsigned char ARCH(11) 1

vector bool short vector signed short vector signed short ARCH(11) 1

vector unsigned short vector unsigned short ARCH(11) 1

vector bool int vector signed int vector signed int ARCH(11) 1

vector unsigned int vector unsigned int ARCH(11) 1

vector float vector float ARCH(12) 1

vector bool long long vector signed long long vector signed long long ARCH(11) 1

vector unsigned long long vector unsigned long long ARCH(11) 1

vector double vector double ARCH(11) 1

Note:

1. This prototype has the exact same semantics as that in the OpenPOWER ABI for
Linux Supplement for the Power Architecture 64-bit ELF V2 ABI, Revision 1.4.

vec_cmplt: Vector Compare Less Than

d = vec_cmplt(a, b)

Returns a vector containing the results of a less-than comparison between each set of corresponding
elements of the given vectors. For each element of the result, the value of each bit is 1 if the value of the
corresponding element of a is less than the value of the corresponding element of b. Otherwise, the value
of each bit is 0.

This operation emulates the operation on the integer vectors.

Table 99. Vector Compare Less Than

d a b MIN ARCH

vector bool char vector signed char vector signed char ARCH(11) 1

vector unsigned char vector unsigned char ARCH(11) 1

vector bool short vector signed short vector signed short ARCH(11) 1

vector unsigned short vector unsigned short ARCH(11) 1

vector bool int vector signed int vector signed int ARCH(11) 1

vector unsigned int vector unsigned int ARCH(11) 1

vector float vector float ARCH(12) 1

vector bool long long vector signed long long vector signed long long ARCH(11) 1

vector unsigned long long vector unsigned long long ARCH(11) 1

vector double vector double ARCH(11) 1

Chapter 3. Using vector programming support 77

Table 99. Vector Compare Less Than (continued)

d a b MIN ARCH

Note:

1. This prototype has the exact same semantics as that in the OpenPOWER ABI for
Linux Supplement for the Power Architecture 64-bit ELF V2 ABI, Revision 1.4.

vec_cmpne_idx: Vector Compare Not Equal Index

d = vec_cmpne_idx(a, b)

Returns the lowest byte-index of comparing each set of corresponding elements of the given vectors for
inequality. If the two vectors are equal, the result is 16.

The result is placed into byte element seven of the returned vector, all other bytes are set to 0.

Table 100. Vector Compare Not Equal Index

d a b MIN ARCH

vector signed char vector signed char vector signed char ARCH(11)

vector unsigned char vector bool char vector bool char ARCH(11)

vector unsigned char vector unsigned char ARCH(11)

vector signed short vector signed short vector signed short ARCH(11)

vector unsigned short vector bool short vector bool short ARCH(11)

vector unsigned short vector unsigned short ARCH(11)

vector signed int vector signed int vector signed int ARCH(11)

vector unsigned int vector bool int vector bool int ARCH(11)

vector unsigned int vector unsigned int ARCH(11)

vec_cmpne_idx_cc: Vector Compare Not Equal Index with Condition Code

d = vec_cmpne_idx_cc(a, b, c)

Returns the lowest byte-index of comparing each set of corresponding elements of the given vectors for
inequality. If the two vectors are equal, the result is 16.

c is set to the following value:

• 1 - if there is a mismatch and that first element from the 0-index of a is less than the corresponding
element of b.

• 2 - if there is a mismatch and that element from the 0-index of a is greater than the corresponding
element of b.

• 3 - if the two vectors are equal.

The result is placed into byte element seven of the returned vector, and all other bytes are set to 0.

78 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

Table 101. Vector Compare Not Equal Index with Condition Code

d a b c MIN ARCH

vector signed char vector signed char vector signed char int * ARCH(11)

vector unsigned char vector bool char vector bool char ARCH(11)

vector unsigned char vector unsigned char ARCH(11)

vector signed short vector signed short vector signed short ARCH(11)

vector unsigned short vector bool short vector bool short ARCH(11)

vector unsigned short vector unsigned short ARCH(11)

vector signed int vector signed int vector signed int ARCH(11)

vector unsigned int vector bool int vector bool int ARCH(11)

vector unsigned int vector unsigned int ARCH(11)

vec_cmpne_or_0_idx: Vector Compare Not Equal or Zero Index

d = vec_cmpne_or_0_idx(a, b)

Returns the lowest byte-index of comparing each set of corresponding elements of the given vectors for
inequality, and comparing each elements of a against 0. If the two vectors are equal, and no elements of
a is 0, the result is 16.

The result is placed into byte element seven of the returned vector, and all other bytes are set to 0.

Table 102. Vector Compare Not Equal or Zero Index

d a b MIN ARCH

vector signed char vector signed char vector signed char ARCH(11)

vector unsigned char vector bool char vector bool char ARCH(11)

vector unsigned char vector unsigned char ARCH(11)

vector signed short vector signed short vector signed short ARCH(11)

vector unsigned short vector bool short vector bool short ARCH(11)

vector unsigned short vector unsigned short ARCH(11)

vector signed int vector signed int vector signed int ARCH(11)

vector unsigned int vector bool int vector bool int ARCH(11)

vector unsigned int vector unsigned int ARCH(11)

vec_cmpne_or_0_idx_cc: Vector Compare Not Equal or Zero Index with Condition Code

d = vec_cmpne_or_0_idx_cc(a, b, c)

Returns the lowest byte-index of comparing each set of corresponding elements of the given vectors for
inequality, and comparing each elements of a against 0. If the two vectors are equal, and no elements of
a is 0, the result is 16.

c is set to the following value:

• 0 - if zero is found on an element of a, starting from the 0-index, before there is a mismatch between
the corresponding elements of a and b.

Chapter 3. Using vector programming support 79

• 1 - if there is a mismatch, and that first element, from the 0-index, of a is less than the corresponding
element of b, and prior to the mismatch a is not 0.

• 2 - if there is a mismatch, and that element, from the 0-index, of a is greater than the corresponding
element of b, and prior to the mismatch a is not 0.

• 3 - if the two vectors are equal, and there is no element from a with a value of 0.

The result is placed into byte element seven of the returned vector, and all other bytes are set to 0.

Table 103. Vector Compare Not Equal or Zero Index with Condition Code

d a b c MIN ARCH

vector signed char vector signed char vector signed char int * ARCH(11)

vector unsigned char vector bool char vector bool char ARCH(11)

vector unsigned char vector unsigned char ARCH(11)

vector signed short vector signed short vector signed short ARCH(11)

vector unsigned short vector bool short vector bool short ARCH(11)

vector unsigned short vector unsigned short ARCH(11)

vector signed int vector signed int vector signed int ARCH(11)

vector unsigned int vector bool int vector bool int ARCH(11)

vector unsigned int vector unsigned int ARCH(11)

Compare Ranges
This section describes vector built-in functions for comparing ranges.

vec_cmpnrg: Vector Compare Not in Ranges

d = vec_cmpnrg(a, b, c)

Check if each element of a is not within any of the ranges specified by b and c. Each even-odd element
pairs of b define values for the limits of the ranges. The corresponding even-odd pairs of elements in c
control how the comparison to be performed, in the following way:

Comparison
for vector unsigned
char

for vector unsigned
short

for vector unsigned
int

ignore - result of comparison
always TRUE

0 0 0

equal 0x80 0x8000 0x80000000

not equal 0x60 0x6000 0x60000000

greater than 0x20 0x2000 0x20000000

greater than or equal 0xA0 0xA000 0xA0000000

less than 0x40 0x4000 0x40000000

less than and equal 0xC0 0xC000 0xC0000000

force to FALSE 0xE0 0xE000 0xE0000000

For each element of the result, the value of each bit is 1 if the corresponding element of a was not
contained in any of the specified ranges. Otherwise, the value of each bit is 0.

80 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

Table 104. Vector Compare Not in Ranges

d a b c MIN ARCH

vector bool char vector unsigned char vector unsigned char vector unsigned char ARCH(11)

vector bool short vector unsigned
short

vector unsigned
short

vector unsigned
short

ARCH(11)

vector bool int vector unsigned int vector unsigned int vector unsigned int ARCH(11)

Example 1: Comparing 2 ranges

vector unsigned int a = {11, 22, 33, 44};
vector unsigned int b = {10, 20, 30, 40};
vector unsigned int c = {0x20000000, 0x40000000, 0x20000000,
 0x40000000}; // {GT, LT, GT, LT}

vector bool int d = vec_cmpnrg(a, b, c);
// d = {0, 0xFFFFFFFF, 0, 0xFFFFFFFF}

In this example, each element of a is checked to be (> 10 AND < 20) OR (> 30 AND < 40).

Example 2: Comparing a single range, and a specific value

vector unsigned int a = {11, 22, 33, 30};
vector unsigned int b = {10, 20, 30, 30};
vector unsigned int c = {0x20000000, 0x40000000, 0x80000000,
 0x80000000}; // {GT, LT, EQ, EQ}

vector bool int d = vec_cmpnrg(a, b, c);
// d = {0, 0xFFFFFFFF, 0xFFFFFFFF, 0)

In this example, each element of a is checked to be (> 10 AND < 20) OR equals to 30.

Example 3: Comparing a single range

vector unsigned int a = {11, 22, 33, 44};
vector unsigned int b = {10, 20, 30, 40};
vector unsigned int c = {0x20000000, 0x40000000, 0x00000000,
 0x00000000}; // {GT, LT, X, X}

vector bool int d = vec_cmpnrg(a, b, c);
// d = {0, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF}

In this example, each element of a is checked to be (> 10 AND < 20) only.

vec_cmpnrg_cc: Vector Compare Not in Ranges with Condition Code

e = vec_cmpnrg_cc(a, b, c, d)

Check if each element of a is not within any of the ranges specified by b and c. Each even-odd element
pairs of b define values for the limits of the ranges. The corresponding even-odd pairs of elements in c
control how the comparison to be performed, in the following way:

Comparison
for vector unsigned
char

for vector unsigned
short for vector unsigned int

ignore - result of
comparison always
TRUE

0 0 0

equal 0x80 0x8000 0x80000000

not equal 0x60 0x6000 0x60000000

greater than 0x20 0x2000 0x20000000

greater than or equal 0xA0 0xA000 0xA0000000

Chapter 3. Using vector programming support 81

Comparison
for vector unsigned
char

for vector unsigned
short for vector unsigned int

less than 0x40 0x4000 0x40000000

less than and equal 0xC0 0xC000 0xC0000000

force to FALSE 0xE0 0xE000 0xE0000000

For each element of the result, the value of each bit is 1 if the corresponding element of a was not
contained in any of the specified ranges. Otherwise, the value of each bit is 0.

d is set to 1, if there is at least one element of a is found not within any of the ranges. Otherwise, d is set
to 3.

Table 105. Vector Compare Not in Ranges with Condition Code

e a b c d MIN ARCH

vector bool char vector unsigned
char

vector unsigned
char

vector unsigned
char

int * ARCH(11)

vector bool short vector unsigned
short

vector unsigned
short

vector unsigned
short

ARCH(11)

vector bool int vector unsigned int vector unsigned int vector unsigned int ARCH(11)

vec_cmpnrg_idx: Vector Compare Not in Ranges Index

d = vec_cmpnrg_idx(a, b, c)

Returns the lowest byte-index of the element of a that is not within any of the ranges specified by b and c.
Each even-odd element pairs of b define values for the limits of the ranges. The corresponding even-odd
pairs of elements in c control how the comparison to be performed, in the following way:

Comparison
for vector unsigned
char

for vector unsigned
short for vector unsigned int

ignore - result of
comparison always
TRUE

0 0 0

equal 0x80 0x8000 0x80000000

not equal 0x60 0x6000 0x60000000

greater than 0x20 0x2000 0x20000000

greater than or equal 0xA0 0xA000 0xA0000000

less than 0x40 0x4000 0x40000000

less than and equal 0xC0 0xC000 0xC0000000

force to FALSE 0xE0 0xE000 0xE0000000

The result is the lowest byte-index from element of a that is not contained in any of the specified ranges.
Otherwise, the result is 16.

The result is placed into byte element seven of the returned vector, and all other bytes are set to 0.

Table 106. Vector Compare Not in Ranges Index

d a b c MIN ARCH

vector unsigned char vector unsigned char vector unsigned char vector unsigned char ARCH(11)

82 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

Table 106. Vector Compare Not in Ranges Index (continued)

d a b c MIN ARCH

vector unsigned
short

vector unsigned
short

vector unsigned
short

vector unsigned
short

ARCH(11)

vector unsigned int vector unsigned int vector unsigned int vector unsigned int ARCH(11)

Example:

vector unsigned int a = {1, 11, 22, 33};
vector unsigned int b = {10, 20, 30, 40};
vector unsigned int c = {0x20000000, 0x40000000, 0x20000000,
 0x40000000}; // {GT, LT, GT, LT}

vector unsigned int d = vec_cmpnrg_idx(a, b, c); // byte 7 of d = 0

In this example, each element of a is tested to be NOT((> 10 AND < 20) OR (>30 AND < 40)), the first
element (byte index 0) is the first element satisfying the condition.

vec_cmpnrg_idx_cc: Vector Compare Not in Ranges Index with Condition Code

e = vec_cmpnrg_idx_cc(a, b, c, d)

Returns the lowest byte-index of the element of a that is not within any of the ranges specified by b and c.
Each even-odd element pairs of b define values for the limits of the ranges. The corresponding even-odd
pairs of elements in c control how the comparison to be performed, in the following way:

Comparison
for vector unsigned
char

for vector unsigned
short for vector unsigned int

ignore - result of
comparison always
TRUE

0 0 0

equal 0x80 0x8000 0x80000000

not equal 0x60 0x6000 0x60000000

greater than 0x20 0x2000 0x20000000

greater than or equal 0xA0 0xA000 0xA0000000

less than 0x40 0x4000 0x40000000

less than and equal 0xC0 0xC000 0xC0000000

force to FALSE 0xE0 0xE000 0xE0000000

d is set to 1, if there is at least one element of a is found not within any of the ranges. Otherwise, d is set
to 3.

The result is placed into byte element seven of the returned vector, and all other bytes are set to 0.

Table 107. Vector Compare Not in Ranges Index with Condition Code

e a b c d MIN ARCH

vector unsigned
char

vector unsigned
char

vector unsigned
char

vector unsigned
char

int * ARCH(11)

vector unsigned
short

vector unsigned
short

vector unsigned
short

vector unsigned
short

ARCH(11)

vector unsigned int vector unsigned int vector unsigned int vector unsigned int ARCH(11)

Chapter 3. Using vector programming support 83

vec_cmpnrg_or_0_idx: Vector Compare Not in Ranges or Zero Index

d = vec_cmpnrg_or_0_idx(a, b, c)

Returns the lowest byte-index of the element of a that is 0 or not within any of the ranges specified by b
and c. Each even-odd element pairs of b define values for the limits of the ranges. The corresponding
even-odd pairs of elements in c control how the comparison to be performed, in the following way:

Comparison
for vector unsigned
char

for vector unsigned
short for vector unsigned int

ignore - result of
comparison always
TRUE

0 0 0

equal 0x80 0x8000 0x80000000

not equal 0x60 0x6000 0x60000000

greater than 0x20 0x2000 0x20000000

greater than or equal 0xA0 0xA000 0xA0000000

less than 0x40 0x4000 0x40000000

less than and equal 0xC0 0xC000 0xC0000000

force to FALSE 0xE0 0xE000 0xE0000000

The result is the lowest byte-index from element of a that is 0 or not contained in any of the specified
ranges. Otherwise, the result is 16.

The result is placed into byte element seven of the returned vector, and all other bytes are set to 0.

Table 108. Vector Compare Not in Ranges or Zero Index

d a b c MIN ARCH

vector unsigned char vector unsigned char vector unsigned char vector unsigned char ARCH(11)

vector unsigned
short

vector unsigned
short

vector unsigned
short

vector unsigned
short

ARCH(11)

vector unsigned int vector unsigned int vector unsigned int vector unsigned int ARCH(11)

Example:

vector unsigned int a = {11, 33, 0, 22};
vector unsigned int b = {10, 20, 30, 40};
vector unsigned int c = {0x20000000, 0x40000000, 0x20000000,
 0x40000000}; // {GT, LT, GT, LT}

vector unsigned int d = vec_cmpnrg_or_0_idx(a, b, c); // byte 7 of d = 8

In this example, each element of a is tested to be (equals 0) OR NOT((> 10 AND < 20) OR (>30 AND <
40)), the third element (byte index 8) is the first element satisfying the condition.

vec_cmpnrg_or_0_idx_cc: Vector Compare Not in Ranges or Zero Index with Condition Code

e = vec_cmpnrg_or_0_idx_cc(a, b, c, d)

Returns the lowest byte-index of the element of a that is 0 or not within any of the ranges specified by b
and c. Each even-odd element pairs of b define values for the limits of the ranges. The corresponding
even-odd pairs of elements in c control how the comparison to be performed, in the following way:

84 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

Comparison
for vector unsigned
char

for vector unsigned
short for vector unsigned int

ignore - result of
comparison always
TRUE

0 0 0

equal 0x80 0x8000 0x80000000

not equal 0x60 0x6000 0x60000000

greater than 0x20 0x2000 0x20000000

greater than or equal 0xA0 0xA000 0xA0000000

less than 0x40 0x4000 0x40000000

less than and equal 0xC0 0xC000 0xC0000000

force to FALSE 0xE0 0xE000 0xE0000000

d is set to one of the following:

• 0 - if 0 was found on an element of a, before an element was not found within the specified range.
• 1 - if no element of a is 0, and there is at least one element of a found not in any of the ranges.
• 2 - if 0 was found on an element of a after an element was found not within the specified range.
• 3 - no element is 0 and found to be not within any of the specified range.

The result is placed into byte element seven of the returned vector, and all other bytes are set to 0.

Table 109. Vector Compare Not in Ranges or Zero Index with Condition Code

e a b c d MIN ARCH

vector unsigned
char

vector unsigned
char

vector unsigned
char

vector unsigned
char

int * ARCH(11)

vector unsigned
short

vector unsigned
short

vector unsigned
short

vector unsigned
short

ARCH(11)

vector unsigned int vector unsigned int vector unsigned int vector unsigned int ARCH(11)

vec_cmprg: Vector Compare Ranges

d = vec_cmprg(a, b, c)

Check if each element of a is within any of the ranges specified by b and c. Each even-odd element pairs
of b define values for the limits of the ranges. The corresponding even-odd pairs of elements in c control
how the comparison to be performed, in the following way:

Comparison
for vector unsigned
char

for vector unsigned
short for vector unsigned int

ignore - result of
comparison always
TRUE

0 0 0

equal 0x80 0x8000 0x80000000

not equal 0x60 0x6000 0x60000000

greater than 0x20 0x2000 0x20000000

greater than or equal 0xA0 0xA000 0xA0000000

Chapter 3. Using vector programming support 85

Comparison
for vector unsigned
char

for vector unsigned
short for vector unsigned int

less than 0x40 0x4000 0x40000000

less than and equal 0xC0 0xC000 0xC0000000

force to FALSE 0xE0 0xE000 0xE0000000

For each element of the result, the value of each bit is 1 if the corresponding element of a was contained
in any of the specified ranges. Otherwise, the value of each bit is 0.

Table 110. Vector Compare Ranges

d a b c MIN ARCH

vector bool char vector unsigned char vector unsigned char vector unsigned char ARCH(11)

vector bool short vector unsigned
short

vector unsigned
short

vector unsigned
short

ARCH(11)

vector bool int vector unsigned int vector unsigned int vector unsigned int ARCH(11)

Example 1: Comparing 2 ranges

vector unsigned int a = {11, 22, 33, 44};
vector unsigned int b = {10, 20, 30, 40};
vector unsigned int c = {0x20000000, 0x40000000, 0x20000000,
 0x40000000}; // {GT, LT, GT, LT}

vector bool int d = vec_cmprg(a, b, c);
// d = {0xFFFFFFFF, 0, 0xFFFFFFFF, 0}

In this example, each element of a is checked to be (> 10 AND < 20) OR (> 30 AND < 40).

Example 2: Comparing a single range, and a specific value

vector unsigned int a = {11, 22, 33, 30};
vector unsigned int b = {10, 20, 30, 30};
vector unsigned int c = {0x20000000, 0x40000000, 0x80000000,
 0x80000000}; // {GT, LT, EQ, EQ}

vector bool int d = vec_cmprg(a, b, c);
// d = {0xFFFFFFFF, 0, 0, 0xFFFFFFFF)

In this example, each element of a is checked to be (> 10 AND < 20) OR equals to 30.

Example 3: Comparing a single range

vector unsigned int a = {11, 22, 33, 44};
vector unsigned int b = {10, 20, 30, 40};
vector unsigned int c = {0x20000000, 0x40000000, 0x00000000,
 0x00000000}; // {GT, LT, X, X}

vector bool int d = vec_cmprg(a, b, c);
// d = {0xFFFFFFFF, 0, 0, 0}

In this example, each element of a is checked to be (> 10 AND < 20) only.

vec_cmprg_cc: Vector Compare Ranges with Condition Code

e = vec_cmprg_cc(a, b, c, d)

Check if each element of a is within any of the ranges specified by b and c. Each even-odd element pairs
of b define values for the limits of the ranges. The corresponding even-odd pairs of elements in c control
how the comparison to be performed, in the following way:

86 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

Comparison
for vector unsigned
char

for vector unsigned
short for vector unsigned int

ignore - result of
comparison always
TRUE

0 0 0

equal 0x80 0x8000 0x80000000

not equal 0x60 0x6000 0x60000000

greater than 0x20 0x2000 0x20000000

greater than or equal 0xA0 0xA000 0xA0000000

less than 0x40 0x4000 0x40000000

less than and equal 0xC0 0xC000 0xC0000000

force to FALSE 0xE0 0xE000 0xE0000000

For each element of the result, the value of each bit is 1 if the corresponding element of a was contained
in any of the specified ranges. Otherwise, the value of each bit is 0.

d is set to 1, if there is at least one element of a found in any of the ranges. Otherwise, d is set to 3.

Table 111. Vector Compare Ranges with Condition Code

e a b c d MIN ARCH

vector bool char vector unsigned
char

vector unsigned
char

vector unsigned
char

int * ARCH(11)

vector bool short vector unsigned
short

vector unsigned
short

vector unsigned
short

ARCH(11)

vector bool int vector unsigned int vector unsigned int vector unsigned int ARCH(11)

vec_cmprg_idx: Vector Compare Ranges Index

d = vec_cmprg_idx(a, b, c)

Returns the lowest byte-index of the element of a that is within any of the ranges specified by b and c.
Each even-odd element pairs of b define values for the limits of the ranges. The corresponding even-odd
pairs of elements in c control how the comparison to be performed, in the following way:

Comparison
for vector unsigned
char

for vector unsigned
short for vector unsigned int

ignore - result of
comparison always
TRUE

0 0 0

equal 0x80 0x8000 0x80000000

not equal 0x60 0x6000 0x60000000

greater than 0x20 0x2000 0x20000000

greater than or equal 0xA0 0xA000 0xA0000000

less than 0x40 0x4000 0x40000000

less than and equal 0xC0 0xC000 0xC0000000

force to FALSE 0xE0 0xE000 0xE0000000

Chapter 3. Using vector programming support 87

The result is the lowest byte-index from element of a that is contained in any of the specified ranges.
Otherwise, the result is 16.

The result is placed into byte element seven of the returned vector, and all other bytes are set to 0.

Table 112. Vector Compare Ranges Index

d a b c MIN ARCH

vector unsigned char vector unsigned char vector unsigned char vector unsigned char ARCH(11)

vector unsigned
short

vector unsigned
short

vector unsigned
short

vector unsigned
short

ARCH(11)

vector unsigned int vector unsigned int vector unsigned int vector unsigned int ARCH(11)

Example:

vector unsigned int a = {1, 11, 22, 33};
vector unsigned int b = {10, 20, 30, 40};
vector unsigned int c = {0x20000000, 0x40000000, 0x20000000,
 0x40000000}; // {GT, LT, GT, LT}

vector unsigned int d = vec_cmprg_idx(a, b, c); // byte 7 of d = 4

In this example, each element of a is tested to be ((> 10 AND < 20) OR (>30 AND < 40)), the second
element (byte index 4) is the first element satisfying the condition.

vec_cmprg_idx_cc: Vector Compare Ranges Index with Condition Code

e = vec_cmprg_idx_cc(a, b, c, d)

Returns the lowest byte-index of the element of a that is within any of the ranges specified by b and c.
Each even-odd element pairs of b define values for the limits of the ranges. The corresponding even-odd
pairs of elements in c control how the comparison to be performed, in the following way:

Comparison
for vector unsigned
char

for vector unsigned
short for vector unsigned int

ignore - result of
comparison always
TRUE

0 0 0

equal 0x80 0x8000 0x80000000

not equal 0x60 0x6000 0x60000000

greater than 0x20 0x2000 0x20000000

greater than or equal 0xA0 0xA000 0xA0000000

less than 0x40 0x4000 0x40000000

less than and equal 0xC0 0xC000 0xC0000000

force to FALSE 0xE0 0xE000 0xE0000000

d is set to 1, if there is at least one element of a found in any of the ranges. Otherwise, d is set to 3.

The result is placed into byte element seven of the returned vector, and all other bytes are set to 0.

88 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

Table 113. Vector Compare Ranges Index with Condition Code

e a b c d MIN ARCH

vector unsigned
char

vector unsigned
char

vector unsigned
char

vector unsigned
char

int * ARCH(11)

vector unsigned
short

vector unsigned
short

vector unsigned
short

vector unsigned
short

ARCH(11)

vector unsigned int vector unsigned int vector unsigned int vector unsigned int ARCH(11)

vec_cmprg_or_0_idx: Vector Compare Ranges or Zero Index

d = vec_cmprg_or_0_idx(a, b, c)

Returns the lowest byte-index of the element of a that is 0 or within any of the ranges specified by b and
c. Each even-odd element pairs of b define values for the limits of the ranges. The corresponding even-
odd pairs of elements in c control how the comparison to be performed, in the following way:

Comparison
for vector unsigned
char

for vector unsigned
short for vector unsigned int

ignore - result of
comparison always
TRUE

0 0 0

equal 0x80 0x8000 0x80000000

not equal 0x60 0x6000 0x60000000

greater than 0x20 0x2000 0x20000000

greater than or equal 0xA0 0xA000 0xA0000000

less than 0x40 0x4000 0x40000000

less than and equal 0xC0 0xC000 0xC0000000

force to FALSE 0xE0 0xE000 0xE0000000

The result is the lowest byte-index from element of a that is 0 or contained in any of the specified ranges.
Otherwise, the result is 16.

The result is placed into byte element seven of the returned vector, and all other bytes are set to 0.

Table 114. Vector Compare Ranges or Zero Index

d a b c MIN ARCH

vector unsigned char vector unsigned char vector unsigned char vector unsigned char ARCH(11)

vector unsigned
short

vector unsigned
short

vector unsigned
short

vector unsigned
short

ARCH(11)

vector unsigned int vector unsigned int vector unsigned int vector unsigned int ARCH(11)

Example:

vector unsigned int a = {1, 0, 22, 33};
vector unsigned int b = {10, 20, 30, 40};
vector unsigned int c = {0x20000000, 0x40000000, 0x20000000,
 0x40000000}; // {GT, LT, GT, LT}

vector unsigned int d = vec_cmprg_or_0_idx(a, b, c); // byte 7 of d = 4

Chapter 3. Using vector programming support 89

In this example, each element of a is tested to be (equals to 0) OR (> 10 AND < 5) OR (>30 AND < 40), the
second element (byte index 4) is the first element satisfying the condition.

vec_cmprg_or_0_idx_cc: Vector Compare Ranges or Zero Index with Condition Code

e = vec_cmprg_or_0_idx_cc(a, b, c, d)

Returns the lowest byte-index of the element of a that is 0 or within any of the ranges specified by b and
c. Each even-odd element pairs of b define values for the limits of the ranges. The corresponding even-
odd pairs of elements in c control how the comparison to be performed, in the following way:

Comparison
for vector unsigned
char

for vector unsigned
short for vector unsigned int

ignore - result of
comparison always
TRUE

0 0 0

equal 0x80 0x8000 0x80000000

not equal 0x60 0x6000 0x60000000

greater than 0x20 0x2000 0x20000000

greater than or equal 0xA0 0xA000 0xA0000000

less than 0x40 0x4000 0x40000000

less than and equal 0xC0 0xC000 0xC0000000

force to FALSE 0xE0 0xE000 0xE0000000

d is set to one of the following:

• 0 - if 0 was found on an element of a, before an element was found within the specified range.
• 1 - if no element of a is 0, and there is at least one element of a found in any of the ranges.
• 2 - if 0 was found on an element of a after an element was found within the specified range.
• 3 - no element is 0 and found to be within any of the specified range.

The result is placed into byte element seven of the returned vector, and all other bytes are set to 0.

Table 115. Vector Compare Ranges or Zero Index with Condition Code

e a b c d MIN ARCH

vector unsigned
char

vector unsigned
char

vector unsigned
char

vector unsigned
char

int * ARCH(11)

vector unsigned
short

vector unsigned
short

vector unsigned
short

vector unsigned
short

ARCH(11)

vector unsigned int vector unsigned int vector unsigned int vector unsigned int ARCH(11)

Find Any Element
This section describes vector built-in functions for element searching.

vec_find_any_eq: Vector Find Any Element Equal

d = vec_find_any_eq(a, b)

Find element of a from any element of b with an equal value.

90 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

For each element of the result, the value of each bit is 1 if the corresponding elements of a equal any
element of b. Otherwise, the value of each bit is 0.

Table 116. Vector Find Any Element Equal

d a b MIN ARCH

vector bool char vector signed char vector signed char ARCH(11)

vector bool char vector bool char ARCH(11)

vector unsigned char vector unsigned char ARCH(11)

vector bool short vector signed short vector signed short ARCH(11)

vector bool short vector bool short ARCH(11)

vector unsigned short vector unsigned short ARCH(11)

vector bool int vector signed int vector signed int ARCH(11)

vector bool int vector bool int ARCH(11)

vector unsigned int vector unsigned int ARCH(11)

Example:

vector signed int a = {1, -2, 3, -4};
vector signed int b = {-5, 3, -7, 8};

vector bool int d = vec_find_any_eq(a, b); // d = {0, 0, 0xFFFFFFFF, 0}

vec_find_any_eq_cc: Vector Find Any Element Equal with Condition Code

d = vec_find_any_eq_cc(a, b, c)

Find element of a from any element of b with an equal value.

For each element of the result, the value of each bit is 1 if the corresponding elements of a equal any
element of b. Otherwise, the value of each bit is 0. c is set to 1, if there is at least one element of a find a
match with b, otherwise c is set to 3.

Table 117. Vector Find Any Element Equal with Condition Code

d a b c MIN ARCH

vector bool char vector signed char vector signed char int * ARCH(11)

vector bool char vector bool char ARCH(11)

vector unsigned char vector unsigned char ARCH(11)

vector bool short vector signed short vector signed short ARCH(11)

vector bool short vector bool short ARCH(11)

vector unsigned short vector unsigned short ARCH(11)

vector bool int vector signed int vector signed int ARCH(11)

vector bool int vector bool int ARCH(11)

vector unsigned int vector unsigned int ARCH(11)

vec_find_any_eq_idx: Vector Find Any Element Equal Index

d = vec_find_any_eq_idx(a, b)

Chapter 3. Using vector programming support 91

Find the lowest byte-index of element of a from any element of b with an equal value. The result is the
lowest byte-index from element of a, if it is found. Otherwise, the result is 16.

The result is placed into byte element seven of the returned vector, and all other bytes are set to 0.

Table 118. Vector Find Any Element Equal Index

d a b MIN ARCH

vector signed char vector signed char vector signed char ARCH(11)

vector unsigned char vector bool char vector bool char ARCH(11)

vector unsigned char vector unsigned char ARCH(11)

vector signed short vector signed short vector signed short ARCH(11)

vector unsigned short vector bool short vector bool short ARCH(11)

vector unsigned short vector unsigned short ARCH(11)

vector signed int vector signed int vector signed int ARCH(11)

vector unsigned int vector bool int vector bool int ARCH(11)

vector unsigned int vector unsigned int ARCH(11)

Example 1:

vector unsigned int a = {1, 2, 3, 4};
vector unsigned int b = {5, 3, 7, 8};

vector unsigned int d = vec_find_any_eq_idx(a,b); // byte 7 of d = 8

In this example, the third element (byte index 8) of a was found in the vector b.

Example 2:

vector unsigned int a = {1, 2, 3, 4};
vector unsigned int b = {5, 6, 7, 8};

vector unsigned int d = vec_find_any_eq_idx(a,b); // byte 7 of d = 16

In this example, no element from a was found in b, so 16 is returned.

vec_find_any_eq_idx_cc: Vector Find Any Element Equal Index with Condition Code

d = vec_find_any_eq_idx_cc(a, b, c)

Find the lowest byte-index of element of a from any element of b with an equal value. If it is found, the
result is the lowest byte-index from element of a, and c is set to 1. Otherwise, the result is 16, with c set
to 3.

The result is placed into byte element seven of the returned vector, and all other bytes are set to 0.

92 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

Table 119. Vector Find Any Element Equal Index with Condition Code

d a b c MIN ARCH

vector signed char vector signed char vector signed char int * ARCH(11)

vector unsigned char vector bool char vector bool char ARCH(11)

vector unsigned char vector unsigned char ARCH(11)

vector signed short vector signed short vector signed short ARCH(11)

vector unsigned short vector bool short vector bool short ARCH(11)

vector unsigned short vector unsigned short ARCH(11)

vector signed int vector signed int vector signed int ARCH(11)

vector unsigned int vector bool int vector bool int ARCH(11)

vector unsigned int vector unsigned int ARCH(11)

Example 1:

vector unsigned int a = {1, 2, 3, 4};
vector unsigned int b = {5, 3, 7, 8};
int c = 0;

vector unsigned int d = vec_find_any_eq_idx_cc(a,b,&c); // byte 7 of d = 8, c = 1

In this example, the third element (byte index 8) of a was found in the vector b.

Example 2:

vector unsigned int a = {1, 2, 3, 4};
vector unsigned int b = {5, 6, 7, 8};
int c = 0;

vector unsigned int d = vec_find_any_eq_idx_cc(a,b,&c); // byte 7 of d = 16, c = 3

In this example, the no element from a was found in b, so 16 is returned.

vec_find_any_eq_or_0_idx: Vector Find Any Element Equal or Zero Index

d = vec_find_any_eq_or_0_idx(a, b)

Find the byte-index of element of a from any element of b with an equal value, or the byte-index of
element of a is 0. The result is the lowest byte-index from element of a, if it is found to match those
conditions. Otherwise, the result is 16.

The result is placed into byte element seven of the returned vector, and all other bytes are set to 0.

Table 120. Vector Find Any Element Equal or Zero Index

d a b MIN ARCH

vector signed char vector signed char vector signed char ARCH(11)

vector unsigned char vector bool char vector bool char ARCH(11)

vector unsigned char vector unsigned char ARCH(11)

vector signed short vector signed short vector signed short ARCH(11)

vector unsigned short vector bool short vector bool short ARCH(11)

vector unsigned short vector unsigned short ARCH(11)

vector signed int vector signed int vector signed int ARCH(11)

Chapter 3. Using vector programming support 93

Table 120. Vector Find Any Element Equal or Zero Index (continued)

d a b MIN ARCH

vector unsigned int vector bool int vector bool int ARCH(11)

vector unsigned int vector unsigned int ARCH(11)

Example:

vector unsigned int a = {1, 2, 0, 4};
vector unsigned int b = {5, 6, 7, 8};

vector unsigned int d = vec_find_any_eq_or_0_idx(a,b); // byte 7 of d = 8

In this example, the first and second elements of a are not found in the vector b, and the third element
(byte index 8) is a 0.

vec_find_any_eq_or_0_idx_cc: Vector Find Any Element Equal or Zero Index with Condition Code

d = vec_find_any_eq_or_0_idx_cc(a, b, c)

Find the byte-index of element of a from any element of b with an equal value, or the byte-index of
element of a is 0. The result is the lowest byte-index from element of a, if it is found to match those
conditions. Otherwise, the result is 16.

c would be set to one of the following values:

• 0 - if no element of a matches any element of b with an equal value, and there is at least one element
from a with a value of 0.

• 1 - if at least one element of a matches any element of b with an equal value, and no elements of a with
a value of 0.

• 2 - if at least one element of a matches any element of b with an equal value, and there is at least one
element from a has a value of 0.

• 3 - if no element of a matches any element of b with an equal value, and there is no element from a with
a value of 0.

The result is placed into byte element seven of the returned vector, and all other bytes are set to 0.

Table 121. Vector Find Any Element Equal or Zero Index with Condition Code

d a b c MIN ARCH

vector signed char vector signed char vector signed char int * ARCH(11)

vector unsigned char vector bool char vector bool char ARCH(11)

vector unsigned char vector unsigned char ARCH(11)

vector signed short vector signed short vector signed short ARCH(11)

vector unsigned short vector bool short vector bool short ARCH(11)

vector unsigned short vector unsigned short ARCH(11)

vector signed int vector signed int vector signed int ARCH(11)

vector unsigned int vector bool int vector bool int ARCH(11)

vector unsigned int vector unsigned int ARCH(11)

vec_find_any_ne: Vector Find Any Element Not Equal

d = vec_find_any_ne(a, b)

94 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

Find element of a from any element of b with a not equal value.

For each element of the result, the value of each bit is 1 if the corresponding elements of a does not equal
to any element of b. Otherwise, the value of each bit is 0.

Table 122. Vector Find Any Element Not Equal

d a b MIN ARCH

vector bool char vector signed char vector signed char ARCH(11)

vector bool char vector bool char ARCH(11)

vector unsigned char vector unsigned char ARCH(11)

vector bool short vector signed short vector signed short ARCH(11)

vector bool short vector bool short ARCH(11)

vector unsigned short vector unsigned short ARCH(11)

vector bool int vector signed int vector signed int ARCH(11)

vector bool int vector bool int ARCH(11)

vector unsigned int vector unsigned int ARCH(11)

Example:

vector signed int a = {1, -2, 3, -4};
vector signed int b = {-5, 3, -7, 8};

vector bool int d = vec_find_any_ne(a, b);
// d = {0xFFFFFFFF, 0xFFFFFFFF, 0, 0xFFFFFFFF}

vec_find_any_ne_cc: Vector Find Any Element Not Equal with Condition Code

d = vec_find_any_ne_cc(a, b, c)

Find element of a from any element of b with a not equal value.

For each element of the result, the value of each bit is 1 if the corresponding elements of a does not equal
to any element of b. Otherwise, the value of each bit is 0. c is set to 1, if there is at least one element of a
didn't find a match with b, otherwise c is set to 3.

Table 123. Vector Find Any Element Not Equal with Condition Code

d a b c MIN ARCH

vector bool char vector signed char vector signed char int * ARCH(11)

vector bool char vector bool char ARCH(11)

vector unsigned char vector unsigned char ARCH(11)

vector bool short vector signed short vector signed short ARCH(11)

vector bool short vector bool short ARCH(11)

vector unsigned short vector unsigned short ARCH(11)

vector bool int vector signed int vector signed int ARCH(11)

vector bool int vector bool int ARCH(11)

vector unsigned int vector unsigned int ARCH(11)

Chapter 3. Using vector programming support 95

vec_find_any_ne_idx: Vector Find Any Element Not Equal Index

d = vec_find_any_ne_idx(a, b)

Find the lowest byte-index of element of a from any element of b with a not equal value. The result is the
lowest byte-index from element of a, if it is found. Otherwise, the result is 16.

The result is placed into byte element seven of the returned vector, and all other bytes are set to 0.

Table 124. Vector Find Any Element Not Equal Index

d a b MIN ARCH

vector signed char vector signed char vector signed char ARCH(11)

vector unsigned char vector bool char vector bool char ARCH(11)

vector unsigned char vector unsigned char ARCH(11)

vector signed short vector signed short vector signed short ARCH(11)

vector unsigned short vector bool short vector bool short ARCH(11)

vector unsigned short vector unsigned short ARCH(11)

vector signed int vector signed int vector signed int ARCH(11)

vector unsigned int vector bool int vector bool int ARCH(11)

vector unsigned int vector unsigned int ARCH(11)

Example 1:

vector unsigned int a = {1, 2, 3, 4};
vector unsigned int b = {1, 5, 3, 4};

vector unsigned int d = vec_find_any_ne_idx(a,b); // byte 7 of d = 4

In this example, the second element (byte index 4) of a was found to be not equal to any element in b.

Example 2:

vector unsigned int a = {1, 2, 3, 4};
vector unsigned int b = {1, 2, 3, 4};

vector unsigned int d = vec_find_any_ne_idx(a,b); // byte 7 of d = 16

In this example, no element from a was found to be not equal to any element in b, so 16 is returned.

vec_find_any_ne_idx_cc: Vector Find Any Element Not Equal Index with Condition Code

d = vec_find_any_ne_idx_cc(a, b, c)

Find the lowest byte-index of element of a from any element of b with a not equal value. If it is found, the
result is the lowest byte-index from element of a, and c is set to 1. Otherwise, the result is 16, with c set
to 3.

The result is placed into byte element seven of the returned vector, and all other bytes are set to 0.

96 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

Table 125. Vector Find Any Element Not Equal Index with Condition Code

d a b c MIN ARCH

vector signed char vector signed char vector signed char int * ARCH(11)

vector unsigned char vector bool char vector bool char ARCH(11)

vector unsigned char vector unsigned char ARCH(11)

vector signed short vector signed short vector signed short ARCH(11)

vector unsigned short vector bool short vector bool short ARCH(11)

vector unsigned short vector unsigned short ARCH(11)

vector signed int vector signed int vector signed int ARCH(11)

vector unsigned int vector bool int vector bool int ARCH(11)

vector unsigned int vector unsigned int ARCH(11)

Example 1:

vector unsigned int a = {1, 2, 3, 4};
vector unsigned int b = {1, 5, 3, 4};
int c = 0;

vector unsigned int d = vec_find_any_ne_idx_cc(a,b,&c); // byte 7 of d = 4, c = 1

In this example, the second element (byte index 4) of a was found to be not equal to any element in the
vector b.

Example 2:

vector unsigned int a = {1, 2, 3, 4};
vector unsigned int b = {1, 2, 3, 4};
int c = 0;

vector unsigned int d = vec_find_any_ne_idx_cc(a,b,&c); // byte 7 of d = 16, c = 3

vec_find_any_ne_or_0_idx: Vector Find Any Element Not Equal or Zero Index

d = vec_find_any_ne_or_0_idx(a, b)

Find the byte-index of element of a from any element of b with a not equal value, or the byte-index of
element of a is 0. The result is the lowest byte-index from element of a, if it is found to match those
conditions. Otherwise, the result is 16.

The result is placed into byte element seven of the returned vector, and all other bytes are set to 0.

Table 126. Vector Find Any Element Not Equal or Zero Index

d a b MIN ARCH

vector signed char vector signed char vector signed char ARCH(11)

vector unsigned char vector bool char vector bool char ARCH(11)

vector unsigned char vector unsigned char ARCH(11)

vector signed short vector signed short vector signed short ARCH(11)

vector unsigned short vector bool short vector bool short ARCH(11)

vector unsigned short vector unsigned short ARCH(11)

vector signed int vector signed int vector signed int ARCH(11)

Chapter 3. Using vector programming support 97

Table 126. Vector Find Any Element Not Equal or Zero Index (continued)

d a b MIN ARCH

vector unsigned int vector bool int vector bool int ARCH(11)

vector unsigned int vector unsigned int ARCH(11)

Example:

vector unsigned int a = {1, 2, 0, 4};
vector unsigned int b = {1, 2, 3, 4};

vector unsigned int d = vec_find_any_ne_or_0_idx(a,b); // byte 7 of d = 8

In this example, the first and second elements of a are found in the vector b, and the third element (byte
index 8) is a 0.

vec_find_any_ne_or_0_idx_cc: Vector Find Any Element Not Equal or Zero Index with Condition Code

d = vec_find_any_ne_or_0_idx_cc(a, b, c)

Find the byte-index of element of a from any element of b with a not equal value, or the byte-index of
element of a is 0. The result is the lowest byte-index from element of a, if it is found to match those
conditions. Otherwise, the result is 16.

c would be set to one of the following values:

• 0 - if no element of a matches any element of b with a not equal value, and there is at least one element
from a with a value of 0.

• 1 - if at least one element of a matches any element of b with a not equal value, and no elements of a
with a value of 0.

• 2 - if at least one element of a matches any element of b with a not equal value, and there is at least one
element from a has a value of 0.

• 3 - if no element of a matches any element of b with a not equal value, and there is no element from a
with a value of 0.

The result is placed into byte element seven of the returned vector, and all other bytes are set to 0.

Table 127. Vector Find Any Element Not Equal or Zero Index with Condition Code

d a b c MIN ARCH

vector signed char vector signed char vector signed char int * ARCH(11)

vector unsigned char vector bool char vector bool char ARCH(11)

vector unsigned char vector unsigned char ARCH(11)

vector signed short vector signed short vector signed short ARCH(11)

vector unsigned short vector bool short vector bool short ARCH(11)

vector unsigned short vector unsigned short ARCH(11)

vector signed int vector signed int vector signed int ARCH(11)

vector unsigned int vector bool int vector bool int ARCH(11)

vector unsigned int vector unsigned int ARCH(11)

Gather and Scatter
This section describes vector built-in functions for gathering and scattering elements.

98 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

vec_bperm_u128: Vector Bit Permute

d = vec_bperm_u128(a, b)

Gathers up to 16 1-bit values from a quadword in the specified order, and places them in the specified
order in bits 48 - 63 of the result vector register, with the rest of the result zeroed.

For each i (0 <= i < 16), suppose index denote the byte value of the i-th element of b.

If index is greater than or equal to 128, bit 48+i of the result is set to 0.

If index is smaller than 128, bit 48+i of the result is set to the value of the index-th bit of input a.

All other bits are set to 0.

For example:

vector unsigned char a = (vector unsigned char) (65,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1);
vector unsigned char b = (vector unsigned char)
(0,0,0,0,1,1,1,1,128,128,128,128,255,255,255,255）;
vector unsigned long long d = vec_bperm_u128(a, b); //d[0]=0xF00, d[1]=0

Table 128. Vector Bit Permute

d a b MIN ARCH

vector unsigned long long vector unsigned char vector unsigned char ARCH(12)

vec_extract: Vector Extract

d = vec_extract(a, b)

Returns the value of element b from the vector a. This function uses the modulo arithmetic on b to
determine the element number. For example, if b is out of range, the compiler uses b modulo the number
of elements in the vector to determine the element position.

Table 129. Vector Extract

d a b MIN ARCH

signed char vector signed char signed int ARCH(11) 1

unsigned char vector bool char ARCH(11) 1

vector unsigned char ARCH(11) 1

signed short vector signed short ARCH(11) 1

unsigned short vector bool short ARCH(11) 1

vector unsigned short ARCH(11) 1

signed int vector signed int ARCH(11) 1

unsigned int vector bool int ARCH(11) 1

vector unsigned int ARCH(11) 1

signed long long vector signed long long ARCH(11) 1

unsigned long long vector bool long long ARCH(11) 1

vector unsigned long long ARCH(11) 1

float vector float ARCH(12) 1

double vector double ARCH(11) 1

Chapter 3. Using vector programming support 99

Table 129. Vector Extract (continued)

d a b MIN ARCH

Note:

1. This prototype has the exact same semantics as that in the OpenPOWER ABI for
Linux Supplement for the Power Architecture 64-bit ELF V2 ABI, Revision 1.4.

vec_gather_element: Vector Gather Element

e = vec_gather_element(a, b, c, d)

Returns a copy of the vector a with the value of its element d replaced by *(c+b[d]).

Table 130. Vector Gather Element

e a b c d MIN ARCH

vector signed int vector signed int vector unsigned int const signed int * 0-3 ARCH(11)

vector bool int vector bool int const unsigned int
*

ARCH(11)

vector unsigned int vector unsigned int ARCH(11)

vector signed long
long

vector signed long
long

vector unsigned
long long

const signed long
long *

0-1 ARCH(11)

vector bool long
long

vector bool long
long

const unsigned
long long *

ARCH(11)

vector unsigned
long long

vector unsigned
long long

ARCH(11)

vector float vector float vector unsigned int const float * 0-3 ARCH(12)

vector double vector double vector unsigned
long long

const double * 0-1 ARCH(11)

Example:

unsigned int a1[10] = {10, 11, 12, 13, 14, 15, 16, 17, 18, 19};
unsigned int a2[10] = {20, 21, 22, 23, 24, 25, 26, 27, 28, 29};
vector unsigned int v1= {1, 2, 3, 4}, v2 = {1, 2, 3, 4};
vector unsigned int v3 = {5 * sizeof(int), 8 * sizeof(int),
 9 * sizeof(int), 6 * sizeof(int)};

v1 = vec_gather_element (v1, v3, a1, 0); // v1 = {15, 2, 3, 4}
v2 = vec_gather_element (v2, v3, a2, 0); // v2 = {25, 2, 3, 4}

vec_insert: Vector Insert

d = vec_insert(a, b, c)

Returns a copy of the vector b with the value of its element c replaced by a. This function uses the
modulo arithmetic on c to determine the element number. For example, if c is out of range, the compiler
uses c modulo the number of elements in the vector to determine the element position.

100 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

Table 131. Vector Insert

d a b c MIN ARCH

vector signed char signed char vector signed char signed int ARCH(11) 1

vector unsigned char unsigned char vector unsigned char ARCH(11) 1

vector signed short signed short vector signed short ARCH(11) 1

vector unsigned short unsigned short vector unsigned short ARCH(11) 1

vector signed int signed int vector signed int ARCH(11) 1

vector unsigned int unsigned int vector unsigned int ARCH(11) 1

vector signed long long signed long long vector signed long long ARCH(11) 1

vector unsigned long
long

unsigned long long vector unsigned long
long

ARCH(11) 1

vector float float vector float ARCH(12) 1

vector double double vector double ARCH(11) 1

Note:

1. This prototype has the exact same semantics as that in the OpenPOWER ABI for
Linux Supplement for the Power Architecture 64-bit ELF V2 ABI, Revision 1.4.

vec_insert_and_zero: Vector Insert and Zero

d = vec_insert_and_zero(a)

Returns vector d with the rightmost sub-element or element of the leftmost doubleword element set to
what is pointed to by a. The bit positions of all other elements are set to zero.

Table 132. Vector Insert and Zero

d a MIN ARCH

vector unsigned char const unsigned char * ARCH(11)

vector signed char const signed char * ARCH(11)

vector unsigned short const unsigned short * ARCH(11)

vector signed short const signed short * ARCH(11)

vector unsigned int const unsigned int * ARCH(11)

vector signed int const signed int * ARCH(11)

vector unsigned long long const unsigned long long * ARCH(11)

vector signed long long const signed long long * ARCH(11)

vector float const float * ARCH(12)

vector double const double * ARCH(11)

vec_perm: Vector Permute

d = vec_perm(a, b, c)

Returns a vector that contains some elements of two vectors, in the order specified by a third vector.

Chapter 3. Using vector programming support 101

Each byte of the result is selected by using the least significant 5 bits of the corresponding byte of c as an
index into the concatenated bytes of a and b.

Note: The vector generate mask built-in function vec_genmask could help generate the mask c.

Table 133. Vector Permute

d a b c MIN ARCH

vector signed char vector signed char vector signed char vector
unsigned
char

ARCH(11) 1

vector bool char vector bool char vector bool char ARCH(11) 1

vector unsigned char vector unsigned char vector unsigned char ARCH(11) 1

vector signed short vector signed short vector signed short ARCH(11) 1

vector bool short vector bool short vector bool short ARCH(11) 1

vector unsigned short vector unsigned short vector unsigned short ARCH(11) 1

vector signed int vector signed int vector signed int ARCH(11) 1

vector bool int vector bool int vector bool int ARCH(11) 1

vector unsigned int vector unsigned int vector unsigned int ARCH(11) 1

vector signed long long vector signed long long vector signed long long ARCH(11) 1

vector bool long long vector bool long long vector bool long long ARCH(11) 1

vector unsigned long
long

vector unsigned long
long

vector unsigned long
long

ARCH(11) 1

vector float vector float vector float ARCH(12) 1

vector double vector double vector double ARCH(11) 1

Note:

1. This prototype has the exact same semantics as that in the OpenPOWER ABI for
Linux Supplement for the Power Architecture 64-bit ELF V2 ABI, Revision 1.4.

vec_promote: Vector Promote

d = vec_promote(a, b)

Returns a vector with a in element position b. The result is a vector with a in element position b. This
function uses modulo arithmetic on b to determine the element number. For example, if b is out of range,
the compiler uses b modulo the number of elements in the vector to determine the element position. The
other elements of the vector are undefined.

102 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

Table 134. Vector Promote

d a b MIN ARCH

vector signed char signed char signed int ARCH(11)

vector unsigned char unsigned char ARCH(11)

vector signed short signed short ARCH(11)

vector unsigned short unsigned short ARCH(11)

vector signed int signed int ARCH(11)

vector unsigned int unsigned int ARCH(11)

vector signed long long signed long long ARCH(11)

vector unsigned long long unsigned long long ARCH(11)

vector float float ARCH(12)

vector double double ARCH(11)

vec_scatter_element: Vector Scatter Element

vec_scatter_element(a, b, c, d)

Store vector element a[d] to *(c+b[d]).

Table 135. Vector Scatter Element

a b c d MIN ARCH

vector signed int vector unsigned int signed int * 0 - 3 ARCH(11)

vector bool int unsigned int * ARCH(11)

vector unsigned int ARCH(11)

vector signed long long vector unsigned long
long

signed long long * 0 - 1 ARCH(11)

vector bool long long unsigned long long * ARCH(11)

vector unsigned long
long

ARCH(11)

vector float vector unsigned int float * 0-3 ARCH(12)

vector double vector unsigned long
long

double * 0 - 1 ARCH(11)

vec_sel: Vector Select

d = vec_sel(a, b, c)

Returns a vector containing the value of either a or b depending on the value of c. Each bit of the result
vector has the value of the corresponding bit of a if the corresponding bit of c is 0, or the value of the
corresponding bit of b otherwise.

Table 136. Vector Select

d a b c MIN ARCH

vector bool char vector bool char vector bool char vector bool char ARCH(11) 1

vector unsigned char ARCH(11) 1

Chapter 3. Using vector programming support 103

Table 136. Vector Select (continued)

d a b c MIN ARCH

vector signed char vector signed char vector signed char vector bool char ARCH(11) 1

vector unsigned char ARCH(11) 1

vector unsigned char vector unsigned char vector unsigned char vector bool char ARCH(11) 1

vector unsigned char ARCH(11) 1

vector bool short vector bool short vector bool short vector bool short ARCH(11) 1

vector unsigned
short

ARCH(11) 1

vector signed short vector signed short vector signed short vector bool shot ARCH(11) 1

vector unsigned
short

ARCH(11) 1

vector unsigned
short

vector unsigned
short

vector unsigned
short

vector bool short ARCH(11) 1

vector unsigned
short

ARCH(11) 1

vector bool int vector bool int vector bool int vector bool int ARCH(11) 1

vector unsigned int ARCH(11) 1

vector signed int vector signed int vector signed int vector bool int ARCH(11) 1

vector unsigned int ARCH(11) 1

vector unsigned int vector unsigned int vector unsigned int vector bool int ARCH(11) 1

vector unsigned int ARCH(11) 1

vector bool long long vector bool long long vector bool long long vector bool long long ARCH(11) 1

vector unsigned long
long

ARCH(11) 1

vector signed long
long

vector signed long
long

vector signed long
long

vector bool long long ARCH(11) 1

vector unsigned long
long

ARCH(11) 1

vector unsigned long
long

vector unsigned long
long

vector unsigned long
long

vector bool long long ARCH(11) 1

vector unsigned long
long

ARCH(11) 1

vector float vector float vector float vector bool int ARCH(12) 1

vector unsigned int ARCH(12) 1

vector double vector double vector double vector bool long long ARCH(11) 1

vector unsigned long
long

ARCH(11) 1

Note:

1. This prototype has the exact same semantics as that in the OpenPOWER ABI for
Linux Supplement for the Power Architecture 64-bit ELF V2 ABI, Revision 1.4.

104 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

Examples

vector signed int a = {1, 2, 3, 4};
vector signed int b = {5, 6, 7, 8};

vector unsigned int e = {9, 10, 11, 12};
vector unsigned int f = {9, 9, 11, 11};

vector bool int c = vec_cmpeq(e, f); // c = {0xFFFFFFFF, 0, 0xFFFFFFFF, 0}
vector signed int d = vec_sel (a, b, c); // d = {5, 2, 7, 4}

Generate Mask
This section describes vector built-in functions for generating mask.

vec_genmask: Vector Generate Byte Mask

d = vec_genmask(a)

Generates byte masks for elements in the return vector. For each bit in a, if the bit is one, all bit positions
in the corresponding byte element of d are set to ones. Otherwise, if the bit is zero, the corresponding
byte element is set to zero.

Table 137. Vector Generate Byte Mask

d a MIN ARCH

vector unsigned char unsigned short literal ARCH(11)

vec_genmasks_8: Vector Generate Mask (Byte)

d = vec_genmasks_8(a, b)

Generates bit masks for elements in the return vector. For each byte element in d, a bit mask is
generated. The mask consists of bits set to one starting at the bit position specified by a and ending with
the bit position specified by b. All other bit positions are set to zero.

Notes:

• If a or b is greater than 8, the operation is performed as if the value gets modulo by 8.
• If a is greater than b, the operation is perform as if b equals 7.

Table 138. Vector Generate Mask (Byte)

d a b MIN ARCH

vector unsigned char 0 - 255 0 - 255 ARCH(11)

vec_genmasks_16: Vector Generate Mask (Halfword)

d = vec_genmasks_16(a, b)

Generates bit masks for elements in the return vector. For each halfword element in d, a bit mask is
generated. The mask consists of bits set to one starting at the bit position specified by a and ending with
the bit position specified by b. All other bit positions are set to zero.

Notes:

• If a or b is greater than 16, the operation is performed as if the value gets modulo by 16.
• If a is greater than b, the operation is perform as if b equals 15.

Chapter 3. Using vector programming support 105

Table 139. Vector Generate Mask (Halfword)

d a b MIN ARCH

vector unsigned short 0 - 255 0 - 255 ARCH(11)

vec_genmasks_32: Vector Generate Mask (Word)

d = vec_genmasks_32(a, b)

Generates bit masks for elements in the return vector. For each element in d, a bit mask is generated. The
mask consists of bits set to one starting at the bit position specified by a and ending with the bit position
specified by b. All other bit positions are set to zero.

Notes:

• If a or b is greater than 32, the operation is performed as if the value gets modulo by 32.
• If a is greater than b, the operation is perform as if b equals 31.

Table 140. Vector Generate Mask (Word)

d a b MIN ARCH

vector unsigned int 0 - 255 0 - 255 ARCH(11)

vec_genmasks_64: Vector Generate Mask (Doubleword)

d = vec_genmasks_64(a, b)

Generates bit masks for elements in the return vector. For each doubleword element in d, a bit mask is
generated. The mask consists of bits set to one starting at the bit position specified by a and ending with
the bit position specified by b. All other bit positions are set to zero.

Notes:

• If a or b is greater than 64, the operation is performed as if the value gets modulo by 64.
• If a is greater than b, the operation is perform as if b equals 63.

Table 141. Vector Generate Mask (Doubleword)

d a b MIN ARCH

vector unsigned long long 0 - 255 0 - 255 ARCH(11)

Copy until Zero
This section describes vector built-in functions for copying until a zero is encountered.

vec_cp_until_zero: Vector Copy Until Zero

d = vec_cp_until_zero(a)

Copies the vector elements from a to d, starting from vector element 0, until the vector element from a
contains a value of 0, or the entire vector is copied. The remaining vector elements in d are set to 0.

Table 142. Vector Copy Until Zero

d a MIN ARCH

vector signed char vector signed char ARCH(11)

vector bool char vector bool char ARCH(11)

vector unsigned char vector unsigned char ARCH(11)

106 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

Table 142. Vector Copy Until Zero (continued)

d a MIN ARCH

vector signed short vector signed short ARCH(11)

vector bool short vector bool short ARCH(11)

vector unsigned short vector unsigned short ARCH(11)

vector signed int vector signed int ARCH(11)

vector bool int vector bool int ARCH(11)

vector unsigned int vector unsigned int ARCH(11)

vec_cp_until_zero_cc: Vector Copy Until Zero

d = vec_cp_until_zero_cc(a, b)

Copies the vector elements from a to d, starting from vector element 0, until the vector element from a
contains a value of 0, or the entire vector is copied. The remaining vector elements in d are set to 0.

c is set to 0, if the entire vector was not copied, due to an element from a contains a value of 0.
Otherwise, if all elements of a are non-zero, c is set to 3.

Table 143. Vector Copy Until Zero

d a b MIN ARCH

vector signed char vector signed char int * ARCH(11)

vector bool char vector bool char ARCH(11)

vector unsigned char vector unsigned char ARCH(11)

vector signed short vector signed short ARCH(11)

vector bool short vector bool short ARCH(11)

vector unsigned short vector unsigned short ARCH(11)

vector signed int vector signed int ARCH(11)

vector bool int vector bool int ARCH(11)

vector unsigned int vector unsigned int ARCH(11)

Load and Store
This section describes vector built-in functions for loading and storing vectors.

vec_load_bndry: Vector Load to Block Boundary

d = vec_load_bndry(a, b)

Returns a vector with content loaded from *a, filling the vector starting at byte 0, up to 16 bytes or the
byte boundary specified by b. When a boundary condition is encountered, the rest of the bytes in the
resulting vector are undefined. The __lcbb() built-in function can be used to determine the number of
bytes loaded.

Chapter 3. Using vector programming support 107

Table 144. Vector Load to Block Boundary

d a b MIN ARCH

vector signed char const signed char * 64, 128, 256, 512,
1024, 2048, or
4096

ARCH(11)

vector unsigned char const unsigned char * ARCH(11)

vector signed short const signed short * ARCH(11)

vector unsigned short const unsigned short * ARCH(11)

vector signed int const signed int * ARCH(11)

vector unsigned int const unsigned int * ARCH(11)

vector signed long long const signed long long * ARCH(11)

vector unsigned long long const unsigned long long * ARCH(11)

vector float const float * ARCH(12)

vector double const double * ARCH(11)

vec_load_len: Vector Load with Length

d = vec_load_len(a, b)

Returns a vector with content loaded from *a, filling the vector starting at byte 0, up to the number of
bytes specified by b+1. When b is less than 15, the remaining bytes of the returned vector are set to zero.
When b is greater than 15, only 16 bytes are loaded.

Table 145. Vector Load with Length

d a b MIN ARCH

vector signed char const signed char * unsigned int ARCH(11)

vector unsigned char const unsigned char * ARCH(11)

vector signed short const signed short * ARCH(11)

vector unsigned short const unsigned short * ARCH(11)

vector signed int const signed int * ARCH(11)

vector unsigned int const unsigned int * ARCH(11)

vector signed long long const signed long long * ARCH(11)

vector unsigned long long const unsigned long long * ARCH(11)

vector float const float * ARCH(12)

vector double const double * ARCH(11)

vec_load_len_r: Vector Load Rightmost with Length

d = vec_load_len_r(a, b)

Returns a vector that contains b+1 bytes that are loaded from *a, right justified with the first byte to the
left and the last to the right. When b is less than 15, the remaining bytes of the returned vector are set to
zero. When b is greater than 15, only 16 bytes are loaded.

108 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

Table 146. Vector Load Rightmost with Length

d a b MIN ARCH

vector unsigned char const unsigned char * unsigned int ARCH(12)

vec_load_pair: Vector Load Pair

d = vec_load_pair(a, b)

Returns a vector with a on the 0-indexed element, and b on the 1-indexed element.

Note: This function might be emulated.

Table 147. Vector Load Pair

d a b
MIN
ARCH

vector signed long long signed long long signed long long ARCH(11)

vector unsigned long long unsigned long long unsigned long long ARCH(11)

vec_store_len: Vector Store with Length

d = vec_store_len(a, b, c)

Store c+1 number of bytes to *b from the vector a.

Note: If c is greater than 15, only 16 bytes will be stored.

Table 148. Vector Store with Length

d a b c MIN ARCH

void vector signed char signed char * unsigned int ARCH(11)

vector unsigned char unsigned char * ARCH(11)

vector signed short signed short * ARCH(11)

vector unsigned short unsigned short * ARCH(11)

vector signed int signed int * ARCH(11)

vector unsigned int unsigned int * ARCH(11)

vector signed long long signed long long * ARCH(11)

vector unsigned long long unsigned long long * ARCH(11)

vector float float * ARCH(12)

vector double double * ARCH(11)

vec_store_len_r: Vector Store Rightmost with Length

d = vec_store_len_r(a, b, c)

Store c+1 bytes to *b from the right-justified vector a.

Note: If c is greater than 15, only 16 bytes will be stored.

Chapter 3. Using vector programming support 109

Table 149. Vector Store Rightmost with Length

d a b c MIN ARCH

void vector unsigned char unsigned char * unsigned int ARCH(12)

vec_xl: Vector Load

d = vec_xl(a, b)

Loads a 16-byte vector from the memory address that is specified by the displacement a and the pointer
b. This function adds the displacement and the pointer R-value to obtain the address for the load
operation.

Note: It is preferred that you use pointers and the indirection operator * instead of this function to load
vectors.

Table 150. Vector Load

d a b MIN ARCH

vector signed char long signed char * ARCH(11)

vector unsigned char unsigned char * ARCH(11)

vector signed short signed short * ARCH(11)

vector unsigned short unsigned short * ARCH(11)

vector signed int signed int * ARCH(11)

vector unsigned int unsigned int * ARCH(11)

vector signed long long signed long long * ARCH(11)

vector unsigned long long unsigned long long * ARCH(11)

vector float float * ARCH(12)

vector double double * ARCH(11)

Note: vec_xl_be is available on the XL C/C++ compilers for some other platforms. You can define the
following macro to migrate programs from other platforms to the Enterprise Metal C for z/OS compiler.

#define vec_xl_be(a, b) vec_xl(a,b)

vec_xst: Vector Store

d = vec_xst(a, b, c)

Stores the elements of the 16-byte vector a to the effective address that is obtained by adding the
displacement b in the address c.

Note: It is preferred that you use pointers and the indirection operator * instead of this function to store
vectors.

110 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

Table 151. Vector Store

d a b c MIN ARCH

void vector signed char long signed char * ARCH(11)

vector unsigned char unsigned char * ARCH(11)

vector signed short signed short * ARCH(11)

vector unsigned short unsigned short * ARCH(11)

vector signed int signed int * ARCH(11)

vector unsigned int unsigned int * ARCH(11)

vector signed long long signed long long * ARCH(11)

vector unsigned long long unsigned long long * ARCH(11)

vector float float* ARCH(12)

vector double double * ARCH(11)

Note: vec_xst_be is available on the XL C/C++ compilers for some other platforms. You can define the
following macro to migrate programs from other platforms to the Enterprise Metal C for z/OS compiler.

#define vec_xst_be(a, b) vec_xst(a,b)

Logical
This section describes vector built-in functions for logical calculation.

vec_andc: Vector AND With Complement

d = vec_andc(a, b)

Returns the bitwise AND of the first argument a with the bitwise complement of the second argument b.

Table 152. Vector AND With Complement

d a b MIN ARCH

vector bool char vector bool char vector bool char ARCH(11) 1

vector signed char vector signed char vector signed char ARCH(11) 1

vector unsigned char vector unsigned char vector unsigned char ARCH(11) 1

vector bool short vector bool short vector bool short ARCH(11) 1

vector signed short vector signed short vector signed short ARCH(11) 1

vector unsigned short vector unsigned short vector unsigned short ARCH(11) 1

vector bool int vector bool int vector bool int ARCH(11) 1

vector signed int vector signed int vector signed int ARCH(11) 1

vector unsigned int vector unsigned int vector unsigned int ARCH(11) 1

vector bool long long vector bool long long vector bool long long ARCH(11) 1

vector signed long long vector signed long long vector signed long long ARCH(11) 1

vector unsigned long long vector unsigned long long vector unsigned long long ARCH(11) 1

vector float vector float vector float ARCH(12) 1

Chapter 3. Using vector programming support 111

Table 152. Vector AND With Complement (continued)

d a b MIN ARCH

vector double vector double vector double ARCH(11) 1

Note:

1. This prototype has the exact same semantics as that in the OpenPOWER ABI for
Linux Supplement for the Power Architecture 64-bit ELF V2 ABI, Revision 1.4.

vec_cntlz: Vector Count Leading Zeros

d = vec_cntlz(a)

Computes the count of leading zero bits of each element of the input.

Each element of the result is set to the number of leading zeros of the corresponding element of a.

Table 153. Vector Count Leading Zeros

d a MIN ARCH

vector unsigned char vector unsigned char ARCH(11) 1

vector signed char ARCH(11) 2

vector unsigned short vector unsigned short ARCH(11) 1

vector signed short ARCH(11) 2

vector unsigned int vector unsigned int ARCH(11) 1

vector signed int ARCH(11) 2

vector unsigned long long vector unsigned long long ARCH(11) 1

vector signed long long ARCH(11) 2

Note:

1. This prototype has the exact same semantics as that in the OpenPOWER ABI for
Linux Supplement for the Power Architecture 64-bit ELF V2 ABI, Revision 1.4.

2. This prototype has slightly different semantics than that in the OpenPOWER ABI for Linux
Supplement for the Power Architecture 64-bit ELF V2 ABI, Revision 1.4. The return type signedness on
d is different from that in OpenPower ABI.

vec_cnttz: Vector Count Trailing Zeros

d = vec_cnttz(a)

Computes the count of trailing zero bits of each element of the input.

Each element of the result is set to the number of tailing zeros of the corresponding element of a.

Table 154. Vector Count Trailing Zeros

d a MIN ARCH

vector unsigned char vector unsigned char ARCH(11) 1

vector signed char ARCH(11) 2

112 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

Table 154. Vector Count Trailing Zeros (continued)

d a MIN ARCH

vector unsigned short vector unsigned short ARCH(11) 1

vector signed short ARCH(11) 2

vector unsigned int vector unsigned int ARCH(11) 1

vector signed int ARCH(11) 2

vector unsigned long long vector unsigned long long ARCH(11) 1

vector signed long long ARCH(11) 2

Note:

1. This prototype has the exact same semantics as that in the OpenPOWER ABI for
Linux Supplement for the Power Architecture 64-bit ELF V2 ABI, Revision 1.4.

2. This prototype has slightly different semantics than that in the OpenPOWER ABI for Linux
Supplement for the Power Architecture 64-bit ELF V2 ABI, Revision 1.4. The return type signedness on
d is different from that in OpenPower ABI.

vec_eqv: Vector XNOR

d = vec_eqv(a, b)

Performs a bitwise XNOR of the given vectors a and b.

Note: This function will not cause IEEE exception on vector float and vector double.

Table 155. Vector Not Exclusive Or

d a b MIN ARCH

vector bool char vector bool char vector bool char ARCH(12) 1

vector signed char vector signed char vector signed char ARCH(12) 1

vector unsigned char vector unsigned char vector unsigned char ARCH(12) 1

vector bool short vector bool short vector bool short ARCH(12) 1

vector signed short vector signed short vector signed short ARCH(12) 1

vector unsigned short vector unsigned short vector unsigned short ARCH(12) 1

vector bool int vector bool int vector bool int ARCH(12) 1

vector signed int vector signed int vector signed int ARCH(12) 1

vector unsigned int vector unsigned int vector unsigned int ARCH(12) 1

vector bool long long vector bool long long vector bool long long ARCH(12) 1

vector signed long long vector signed long long vector signed long long ARCH(12) 1

vector unsigned long long vector unsigned long long vector unsigned long long ARCH(12) 1

vector float vector float vector float ARCH(12) 1

vector double vector double vector double ARCH(12) 1

Chapter 3. Using vector programming support 113

Table 155. Vector Not Exclusive Or (continued)

d a b MIN ARCH

Note:

1. This prototype has the exact same semantics as that in the OpenPOWER ABI for
Linux Supplement for the Power Architecture 64-bit ELF V2 ABI, Revision 1.4.

vec_nand: Vector NAND

d = vec_nand(a, b)

Performs a bitwise NAND of the given vectors a and b.

Note: This function will not cause IEEE exception on vector float and vector double.

Table 156. Vector NAND

d a b MIN ARCH

vector bool char vector bool char vector bool char ARCH(12) 1

vector signed char vector signed char vector signed char ARCH(12) 1

vector unsigned char vector unsigned char vector unsigned char ARCH(12) 1

vector bool short vector bool short vector bool short ARCH(12) 1

vector signed short vector signed short vector signed short ARCH(12) 1

vector unsigned short vector unsigned short vector unsigned short ARCH(12) 1

vector bool int vector bool int vector bool int ARCH(12) 1

vector signed int vector signed int vector signed int ARCH(12) 1

vector unsigned int vector unsigned int vector unsigned int ARCH(12) 1

vector bool long long vector bool long long vector bool long long ARCH(12) 1

vector signed long long vector signed long long vector signed long long ARCH(12) 1

vector unsigned long long vector unsigned long long vector unsigned long long ARCH(12) 1

vector float vector float vector float ARCH(12) 1

vector double vector double vector double ARCH(12) 1

Note:

1. This prototype has the exact same semantics as that in the OpenPOWER ABI for
Linux Supplement for the Power Architecture 64-bit ELF V2 ABI, Revision 1.4.

vec_nor: Vector NOR

d = vec_nor(a, b)

Performs a bitwise NOR of the given vectors a and b.

Note: This function will not cause IEEE exception on vector float and vector double.

114 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

Table 157. Vector NOR

d a b MIN ARCH

vector bool char vector bool char vector bool char ARCH(11) 1

vector signed char vector signed char vector signed char ARCH(11) 1

vector unsigned char vector unsigned char vector unsigned char ARCH(11) 1

vector bool short vector bool short vector bool short ARCH(11) 1

vector signed short vector signed short vector signed short ARCH(11) 1

vector unsigned short vector unsigned short vector unsigned short ARCH(11) 1

vector bool int vector bool int vector bool int ARCH(11) 1

vector signed int vector signed int vector signed int ARCH(11) 1

vector unsigned int vector unsigned int vector unsigned int ARCH(11) 1

vector bool long long vector bool long long vector bool long long ARCH(11) 1

vector signed long long vector signed long long vector signed long long ARCH(11) 1

vector unsigned long long vector unsigned long long vector unsigned long long ARCH(11) 1

vector float vector float vector float ARCH(12) 1

vector double vector double vector double ARCH(11) 1

Note:

1. This prototype has the exact same semantics as that in the OpenPOWER ABI for
Linux Supplement for the Power Architecture 64-bit ELF V2 ABI, Revision 1.4.

vec_orc: Vector OR with Complement

d = vec_vec_orc(a, b)

Performs a bitwise OR of the vector a with the negated vector b.

Note: This function will not cause IEEE exception on vector float and vector double.

Table 158. Vector OR with Complement

d a b MIN ARCH

vector bool char vector bool char vector bool char ARCH(12) 1

vector signed char vector signed char vector signed char ARCH(12) 1

vector unsigned char vector unsigned char vector unsigned char ARCH(12) 1

vector bool short vector bool short vector bool short ARCH(12) 1

vector signed short vector signed short vector signed short ARCH(12) 1

vector unsigned short vector unsigned short vector unsigned short ARCH(12) 1

vector bool int vector bool int vector bool int ARCH(12) 1

vector signed int vector signed int vector signed int ARCH(12) 1

vector unsigned int vector unsigned int vector unsigned int ARCH(12) 1

vector bool long long vector bool long long vector bool long long ARCH(12) 1

Chapter 3. Using vector programming support 115

Table 158. Vector OR with Complement (continued)

d a b MIN ARCH

vector signed long long vector signed long long vector signed long long ARCH(12) 1

vector unsigned long long vector unsigned long long vector unsigned long long ARCH(12) 1

vector float vector float vector float ARCH(12) 1

vector double vector double vector double ARCH(12) 1

Note:

1. This prototype has the exact same semantics as that in the OpenPOWER ABI for
Linux Supplement for the Power Architecture 64-bit ELF V2 ABI, Revision 1.4.

vec_popcnt: Vector Population Count

d = vec_popcnt(a)

Computes the population count (number of set bits) in each element of the input.

Each element of the result is set to the number of set bits in the corresponding element of the input.

Note: This function emulates the operation, except for vector signed char and vector unsigned
char.

Table 159. Vector Population Count

d a MIN ARCH

vector unsigned char vector signed char ARCH(11) 1

vector unsigned char ARCH(11) 1

vector unsigned short vector signed short ARCH(11) 1

vector unsigned short ARCH(11) 1

vector unsigned int vector signed int ARCH(11) 1

vector unsigned int ARCH(11) 1

vector unsigned long long vector signed long long ARCH(11) 1

vector unsigned long long ARCH(11) 1

Note:

1. This prototype has the exact same semantics as that in the OpenPOWER ABI for
Linux Supplement for the Power Architecture 64-bit ELF V2 ABI, Revision 1.4.

Merge
This section describes vector built-in functions for merging vectors.

vec_mergeh: Vector Merge High

d = vec_mergeh(a, b)

Merges the most significant ("high") halves of two vectors.

116 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

Figure 16. Merge 2 high-order elements (32-bit)

Assume that the elements of each vector are numbered beginning with 0. The even-numbered elements
of the result are taken, in order, from the elements in the most significant half of a. The odd-numbered
elements of the result are taken, in order, from the elements in the most significant half of b.

Table 160. Vector Merge High

d a b MIN ARCH

vector bool char vector bool char vector bool char ARCH(11) 1

vector signed char vector signed char vector signed char ARCH(11) 1

vector unsigned char vector unsigned char vector unsigned char ARCH(11) 1

vector bool short vector bool short vector bool short ARCH(11) 1

vector signed short vector signed short vector signed short ARCH(11) 1

vector unsigned short vector unsigned short vector unsigned short ARCH(11) 1

vector bool int vector bool int vector bool int ARCH(11) 1

vector signed int vector signed int vector signed int ARCH(11) 1

vector unsigned int vector unsigned int vector unsigned int ARCH(11) 1

vector bool long long vector bool long long vector bool long long ARCH(11) 1

vector signed long long vector signed long long vector signed long long ARCH(11) 1

vector unsigned long long vector unsigned long long vector unsigned long long ARCH(11) 1

vector float vector float vector float ARCH(12) 1

vector double vector double vector double ARCH(11) 1

Note:

1. This prototype has the exact same semantics as that in the OpenPOWER ABI for
Linux Supplement for the Power Architecture 64-bit ELF V2 ABI, Revision 1.4.

vec_mergel: Vector Merge Low

d = vec_mergel(a, b)

Merges the least significant ("low") halves of two vectors.

Chapter 3. Using vector programming support 117

Figure 17. Merge 2 low-order elements (32-bit)

Assume that the elements of each vector are numbered beginning with 0. The even-numbered elements
of the result are taken, in order, from the elements in the least significant half of a. The odd-numbered
elements of the result are taken, in order, from the elements in the least significant half of b.

Table 161. Vector Merge Low

d a b MIN ARCH

vector bool char vector bool char vector bool char ARCH(11) 1

vector signed char vector signed char vector signed char ARCH(11) 1

vector unsigned char vector unsigned char vector unsigned char ARCH(11) 1

vector bool short vector bool short vector bool short ARCH(11) 1

vector signed short vector signed short vector signed short ARCH(11) 1

vector unsigned short vector unsigned short vector unsigned short ARCH(11) 1

vector bool int vector bool int vector bool int ARCH(11) 1

vector signed int vector signed int vector signed int ARCH(11) 1

vector unsigned int vector unsigned int vector unsigned int ARCH(11) 1

vector bool long long vector bool long long vector bool long long ARCH(11) 1

vector signed long long vector signed long long vector signed long long ARCH(11) 1

vector unsigned long long vector unsigned long long vector unsigned long long ARCH(11) 1

vector float vector float vector float ARCH(12) 1

vector double vector double vector double ARCH(11) 1

Note:

1. This prototype has the exact same semantics as that in the OpenPOWER ABI for
Linux Supplement for the Power Architecture 64-bit ELF V2 ABI, Revision 1.4.

Pack and Unpack
This section describes vector built-in functions for pack and unpack.

vec_pack: Vector Pack

d = vec_pack(a, b)

118 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

The value of each element of the result vector is taken from the low-order half of the corresponding
element of the result of concatenating a and b.

Figure 18. Pack 8 integer elements (32-bit) to 8 integer elements (16-bit)

Table 162. Vector Pack

d a b MIN ARCH

vector signed char vector signed short vector signed short ARCH(11) 1

vector bool char vector bool short vector bool short ARCH(11) 1

vector unsigned char vector unsigned short vector unsigned short ARCH(11) 1

vector signed short vector signed int vector signed int ARCH(11) 1

vector bool short vector bool int vector bool int ARCH(11) 1

vector unsigned short vector unsigned int vector unsigned int ARCH(11) 1

vector signed int vector signed long long vector signed long long ARCH(11) 1

vector bool int vector bool long long vector bool long long ARCH(11) 1

vector unsigned int vector unsigned long long vector unsigned long long ARCH(11) 1

Note:

1. This prototype has the exact same semantics as that in the OpenPOWER ABI for
Linux Supplement for the Power Architecture 64-bit ELF V2 ABI, Revision 1.4.

vec_packs: Vector Pack Saturate

d = vec_packs(a, b)

The value of each element of the result vector is the saturated value of the corresponding element of the
result of concatenating a and b.

Figure 19. Pack 8 integer elements (32-bit) to 8 integer elements (16-bit)

Chapter 3. Using vector programming support 119

Table 163. Vector Pack Saturate

d a b MIN ARCH

vector signed char vector signed short vector signed short ARCH(11) 1

vector unsigned char vector unsigned short vector unsigned short ARCH(11) 1

vector signed short vector signed int vector signed int ARCH(11) 1

vector unsigned short vector unsigned int vector unsigned int ARCH(11) 1

vector signed int vector signed long long vector signed long long ARCH(11) 1

vector unsigned int vector unsigned long long vector unsigned long long ARCH(11) 1

Note:

1. This prototype has the exact same semantics as that in the OpenPOWER ABI for
Linux Supplement for the Power Architecture 64-bit ELF V2 ABI, Revision 1.4.

vec_packs_cc: Vector Pack Saturate Condition Code

d = vec_packs_cc(a, b, c)

The value of each element of the result vector is the saturated value of the corresponding element of the
result of concatenating a and b. The resulting condition code is returned through parameter c. For the
signed types, the resulting condition code is from the VECTOR PACK SATURATE (VPKS) instruction. For
the unsigned types, the resulting condition code is from the VECTOR PACK LOGICAL SATURATE (VPKLS)
instruction.

Table 164. Vector Pack Saturate Condition Code

d a b c MIN ARCH

vector signed char vector signed short vector signed short int * ARCH(11)

vector unsigned char vector unsigned short vector unsigned short ARCH(11)

vector signed short vector signed int vector signed int ARCH(11)

vector unsigned short vector unsigned int vector unsigned int ARCH(11)

vector signed int vector signed long long vector signed long long ARCH(11)

vector unsigned int vector unsigned long
long

vector unsigned long
long

ARCH(11)

vec_packsu: Vector Pack Saturated Unsigned

d = vec_packsu(a, b)

The value of each element of the result vector is the saturated unsigned value of the corresponding
element of the result of concatenating a and b.

Table 165. Vector Pack Saturated Unsigned

d a b MIN ARCH

vector unsigned char vector signed short vector signed short ARCH(11) 1

vector unsigned short vector unsigned short ARCH(11) 1

vector unsigned short vector signed int vector signed int ARCH(11) 1

vector unsigned int vector unsigned int ARCH(11) 1

120 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

Table 165. Vector Pack Saturated Unsigned (continued)

d a b MIN ARCH

vector unsigned int vector signed long long vector signed long long ARCH(11) 1

vector unsigned long long vector unsigned long long ARCH(11) 1

Note:

1. This prototype has the exact same semantics as that in the OpenPOWER ABI for
Linux Supplement for the Power Architecture 64-bit ELF V2 ABI, Revision 1.4.

vec_packsu_cc: Vector Pack Saturated Unsigned Condition Code

d = vec_packsu_cc(a, b, c)

The value of each element of the result vector is the saturated unsigned value of the corresponding
element of the result of concatenating a and b. The resulting condition code from the VECTOR PACK
LOGICAL SATURATE (VPKLS) instruction is returned through parameter c.

Table 166. Vector Pack Saturated Unsigned Condition Code

d a b c MIN ARCH

vector unsigned char vector unsigned short vector unsigned short int * ARCH(11)

vector unsigned short vector unsigned int vector unsigned int ARCH(11)

vector unsigned int vector unsigned long
long

vector unsigned long
long

ARCH(11)

vec_unpackh: Vector Unpack High Element

d = vec_unpackh(a)

Unpacks the most significant ("high") half of a vector into a vector with larger elements. The value of each
element of the result is the value of the corresponding element of the most significant half of a.

For prototypes with operands a as vector signed or vector bool types, their resulting values d get
sign-extended; while for prototypes with operands a as vector unsigned types, their resulting values
get 0-extended.

The following diagram illustrates the operation of vec_unpackh on the vector signed or vector
bool types.

Figure 20. Unpack high-order integer elements (16-bit) to integer elements (32-bit)

Chapter 3. Using vector programming support 121

Table 167. Vector Unpack High Element

d a MIN ARCH

vector signed short vector signed char ARCH(11) 1

vector bool short vector bool char ARCH(11) 1

vector unsigned short vector unsigned char ARCH(11)

vector signed int vector signed short ARCH(11) 1

vector bool int vector bool short ARCH(11) 1

vector unsigned int vector unsigned short ARCH(11)

vector signed long long vector signed int ARCH(11) 1

vector bool long long vector bool int ARCH(11) 1

vector unsigned long long vector unsigned int ARCH(11)

Note:

1. This prototype has the exact same semantics as that in the OpenPOWER ABI for
Linux Supplement for the Power Architecture 64-bit ELF V2 ABI, Revision 1.4.

vec_unpackl: Vector Unpack Low Element

d = vec_unpackl(a)

Unpacks the least significant ("low") half of a vector into a vector with larger elements. The value of each
element of the result is the value of the corresponding element of the least significant half of a.

For prototypes with operands a as vector signed or vector bool types, their resulting values d get
sign-extended; while for prototypes with operands a as vector unsigned types, their resulting values
get 0-extended.

The following diagram illustrates the operation of vec_unpackl on the vector signed or vector
bool types.

Figure 21. Unpack low-order integer elements (16-bit) to integer elements (32-bit)

Table 168. Vector Unpack Low Element

d a MIN ARCH

vector signed short vector signed char ARCH(11) 1

vector bool short vector bool char ARCH(11) 1

vector unsigned short vector unsigned char ARCH(11)

122 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

Table 168. Vector Unpack Low Element (continued)

d a MIN ARCH

vector signed int vector signed short ARCH(11) 1

vector bool int vector bool short ARCH(11) 1

vector unsigned int vector unsigned short ARCH(11)

vector signed long long vector signed int ARCH(11) 1

vector bool long long vector bool int ARCH(11) 1

vector unsigned long long vector unsigned int ARCH(11)

Note:

1. This prototype has the exact same semantics as that in the OpenPOWER ABI for
Linux Supplement for the Power Architecture 64-bit ELF V2 ABI, Revision 1.4.

Replicate
This section describes vector built-in functions for replicating vector elements.

vec_splat: Vector Splat

d = vec_splat(a, b)

Returns a vector that has all of its elements set to a given value. The value of each element of the result is
the value of the element of a specified by b.

Table 169. Vector Splat

d a b MIN ARCH

vector bool char vector bool char 0 - 15 ARCH(11)

vector signed char vector signed char ARCH(11)

vector unsigned char vector unsigned char ARCH(11)

vector bool short vector bool short 0 - 7 ARCH(11)

vector signed short vector signed short ARCH(11)

vector unsigned short vector unsigned short ARCH(11)

vector bool int vector bool int 0 - 3 ARCH(11)

vector signed int vector signed int ARCH(11)

vector unsigned int vector unsigned int ARCH(11)

vector bool long long vector bool long long 0 - 1 ARCH(11)

vector signed long long vector signed long long ARCH(11)

vector unsigned long long vector unsigned long long ARCH(11)

vector float vector float 0-3 ARCH(12)

vector double vector double 0-1 ARCH(11)

vec_splat_s8: Vector Splat Signed Byte

d = vec_splat_s8(a)

Chapter 3. Using vector programming support 123

Returns a vector with each of the 16 signed 8-bits element equal to the given value.

Table 170. Vector Splat Signed Byte

d a MIN ARCH

vector signed char -128 - 127 ARCH(11)

vec_splat_s16: Vector Splat Signed Halfword

d = vec_splat_s16(a)

Returns a vector with each of the 8 signed 16-bits element equal to the given value.

Table 171. Vector Splat Signed Halfword

d a MIN ARCH

vector signed short -215 - 215-1 ARCH(11)

vec_splat_s32: Vector Splat Signed Word

d = vec_splat_s32(a)

Returns a vector with each of the 4 signed 32-bits element equal to the given value.

Table 172. Vector Splat Signed Word

d a MIN ARCH

vector signed int -215 - 215-1 ARCH(11)

vec_splat_s64: Vector Splat Signed Doubleword

d = vec_splat_s64(a)

Returns a vector with each of the 2 signed 64-bits element equal to the given value.

Table 173. Vector Splat Signed Doubleword

d a MIN ARCH

vector signed long long -215 - 215-1 ARCH(11)

vec_splat_u8: Vector Splat Unsigned Byte

d = vec_splat_u8(a)

Returns a vector with each of the 16 unsigned 8-bits element equal to the given value.

Table 174. Vector Splat Unsigned Byte

d a MIN ARCH

vector unsigned char 0 - 255 ARCH(11)

vec_splat_u16: Vector Splat Unsigned Halfword

d = vec_splat_u16(a)

Returns a vector with each of the 8 unsigned 16-bits element equal to the given value.

124 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

Table 175. Vector Splat Unsigned Halfword

d a MIN ARCH

vector unsigned short 0 - 216-1 ARCH(11)

vec_splat_u32: Vector Splat Unsigned Word

d = vec_splat_u32(a)

Returns a vector with each of the 4 unsigned 32-bits element equal to the given value.

Table 176. Vector Splat Unsigned Word

d a MIN ARCH

vector unsigned int -215 - 215-1 ARCH(11)

vec_splat_u64: Vector Splat Unsigned Doubleword

d = vec_splat_u64(a)

Returns a vector with each of the 2 unsigned 64-bits element equal to the given value.

Table 177. Vector Splat Doubleword

d a MIN ARCH

vector unsigned long long -215 - 215-1 ARCH(11)

vec_splats: Vector Splats

d = vec_splats(a)

Returns a vector of which the value of each element is set to a.

Table 178. Vector Splats

d a MIN ARCH

vector signed char signed char ARCH(11) 1

vector unsigned char unsigned char ARCH(11) 1

vector signed short signed short ARCH(11) 1

vector unsigned short unsigned short ARCH(11) 1

vector signed int signed int ARCH(11) 1

vector unsigned int unsigned int ARCH(11) 1

vector signed long long signed long long ARCH(11) 1

vector unsigned long long unsigned long long ARCH(11) 1

vector float vector float ARCH(12) 1

vector double double ARCH(11) 1

Note:

1. This prototype has the exact same semantics as that in the OpenPOWER ABI for
Linux Supplement for the Power Architecture 64-bit ELF V2 ABI, Revision 1.4.

Chapter 3. Using vector programming support 125

Rotate and Shift
This section describes vector built-in functions for rotate and shift.

vec_rl: Vector Element Rotate Left

d = vec_rl(a, b)

Rotates each element of a vector left by a given number of bits. Each element of the result is obtained by
rotating the corresponding element of a left by the number of bits specified by the corresponding element
of b, modulo the number of bits in the element.

Table 179. Vector Element Rotate Left

d a b MIN ARCH

vector unsigned char vector unsigned char vector unsigned char ARCH(11) 1

vector signed char vector signed char ARCH(11) 1

vector unsigned short vector unsigned short vector unsigned short ARCH(11) 1

vector signed short vector signed short ARCH(11) 1

vector unsigned int vector unsigned int vector unsigned int ARCH(11) 1

vector signed int vector signed int ARCH(11) 1

vector unsigned long long vector unsigned long long vector unsigned long long ARCH(11) 1

vector signed long long vector signed long long ARCH(11) 1

Note:

1. This prototype has the exact same semantics as that in the OpenPOWER ABI for
Linux Supplement for the Power Architecture 64-bit ELF V2 ABI, Revision 1.4.

vec_rl_mask: Vector Element Rotate and Insert Under Mask

d = vec_rl_mask(a, b, c)

Rotates each element of vector a left by a given number of bits c, modulo the number of bits in the
element, and overlay with the original vector a depends on the mask b. Each bit of the result is obtained
where if the corresponding bit the mask b is 1, it will get the corresponding bit from the intermediate
result. Otherwise, if the corresponding bit the mask b is 0, it will get the corresponding bit from a, before
the rotation.

126 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

Table 180. Vector Element Rotate and Insert Under Mask

d a b c MIN ARCH

vector unsigned char vector unsigned char vector unsigned char unsigned char
literal 0 - 255

ARCH(11)

vector signed char vector signed char vector unsigned char ARCH(11)

vector unsigned short vector unsigned short vector unsigned short ARCH(11)

vector signed short vector signed short vector unsigned short ARCH(11)

vector unsigned int vector unsigned int vector unsigned int ARCH(11)

vector signed int vector signed int vector unsigned int ARCH(11)

vector unsigned long
long

vector unsigned long
long

vector unsigned long
long

ARCH(11)

vector signed long
long

vector signed long
long

vector unsigned long
long

ARCH(11)

vec_rli: Vector Element Rotate Left Immediate

d = vec_rli(a, b)

Rotates each element of a vector left by a given number of bits. Each element of the result is obtained by
rotating the corresponding element of a left by the number of bits specified by b, modulo the number of
bits in the element.

Table 181. Vector Element Rotate Left Immediate

d a b MIN ARCH

vector unsigned char vector unsigned char unsigned long ARCH(11)

vector signed char vector signed char ARCH(11)

vector unsigned short vector unsigned short ARCH(11)

vector signed short vector signed short ARCH(11)

vector unsigned int vector unsigned int ARCH(11)

vector signed int vector signed int ARCH(11)

vector unsigned long long vector unsigned long long ARCH(11)

vector signed long long vector signed long long ARCH(11)

vec_slb: Vector Shift Left by Byte

d = vec_slb(a, b)

Performs a left shift for a vector by a given number of bytes. Each element of the result is obtained by
shifting the corresponding element of a left by the number of bytes specified by bits 1-4 of byte element
seven of b. The bits that are shifted out are replaced by zeros.

Table 182. Vector Shift Left by Byte

d a b MIN ARCH

vector unsigned char vector unsigned char vector unsigned char ARCH(11)

vector signed char ARCH(11)

Chapter 3. Using vector programming support 127

Table 182. Vector Shift Left by Byte (continued)

d a b MIN ARCH

vector signed char vector signed char vector unsigned char ARCH(11)

vector signed char ARCH(11)

vector unsigned short vector unsigned short vector unsigned short ARCH(11)

vector signed short ARCH(11)

vector signed short vector signed short vector unsigned short ARCH(11)

vector signed short ARCH(11)

vector unsigned int vector unsigned int vector unsigned int ARCH(11)

vector signed int ARCH(11)

vector signed int vector signed int vector unsigned int ARCH(11)

vector signed int ARCH(11)

vector unsigned long long vector unsigned long long vector unsigned long long ARCH(11)

vector signed long long ARCH(11)

vector signed long long vector signed long long vector unsigned long long ARCH(11)

vector signed long long ARCH(11)

vector float vector float vector unsigned int ARCH(12)

vector signed int ARCH(12)

vector double vector double vector unsigned long long ARCH(11)

vector signed long long ARCH(11)

vec_sld: Vector Shift Left Double by Byte

d = vec_sld(a, b, c)

Performs a left shift for two concatenated vectors by a given number of bytes. The result is the most
significant 16 bytes obtained by concatenating a and b, and shifting left by the number of bytes specified
by c.

Figure 22. Bit-wise conditional select of vector contents (128-bit)

128 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

Table 183. Vector Shift Left Double by Byte

d a b c MIN ARCH

vector bool char vector bool char vector bool char 0 - 15 ARCH(11)

vector unsigned char vector unsigned char vector unsigned char ARCH(11)

vector signed char vector signed char vector signed char ARCH(11)

vector bool short vector bool short vector bool short ARCH(11)

vector unsigned short vector unsigned short vector unsigned short ARCH(11)

vector signed short vector signed short vector signed short ARCH(11)

vector bool int vector bool int vector bool int ARCH(11)

vector unsigned int vector unsigned int vector unsigned int ARCH(11)

vector signed int vector signed int vector signed int ARCH(11)

vector bool long long vector bool long long vector bool long long ARCH(11)

vector unsigned long
long

vector unsigned long
long

vector unsigned long
long

ARCH(11)

vector signed long long vector signed long long vector signed long long ARCH(11)

vector float vector float vector float ARCH(12)

vector double vector double vector double ARCH(11)

vec_sldw: Vector Shift Left Double by Word

d = vec_sldw(a, b, c)

Returns a vector by concatenating a and b, and then left shifts the result vector by multiples of 4 bytes. c
specifies the offset for the shifting operation. After left-shifting the concatenated a and b by multiples of
4 bytes specified by c, the function takes the four leftmost 4-byte values and forms the result vector.

Table 184. Vector Shift Left Double by Word

d a b c MIN ARCH

vector unsigned char vector unsigned char vector unsigned char 0 - 3 ARCH(11)

vector signed char vector signed char vector signed char ARCH(11)

vector unsigned short vector unsigned short vector unsigned short ARCH(11)

vector signed short vector signed short vector signed short ARCH(11)

vector unsigned int vector unsigned int vector unsigned int ARCH(11)

vector signed int vector signed int vector signed int ARCH(11)

vector unsigned long
long

vector unsigned long
long

vector unsigned long
long

ARCH(11)

vector signed long long vector signed long long vector signed long long ARCH(11)

vec_sll: Vector Shift Left

d = vec_sll(a, b)

Chapter 3. Using vector programming support 129

Performs a left shift for a vector by a given number of bits. Each element of the result is obtained by
shifting the corresponding element of a left by the number of bits specified by the last 3 bits of every byte
of b. The bits that are shifted out are replaced by zeros.

Note: The low-order 3 bits of all byte elements in b must be the same, otherwise the result is undefined.

Table 185. Vector Shift Left

d a b MIN ARCH

vector unsigned char vector unsigned char vector unsigned char ARCH(11) 1

vector signed char vector signed char ARCH(11) 1

vector unsigned short vector unsigned short ARCH(11) 1

vector signed short vector signed short ARCH(11) 1

vector unsigned int vector unsigned int ARCH(11) 1

vector signed int vector signed int ARCH(11) 1

vector unsigned long long vector unsigned long long ARCH(11) 1

vector signed long long vector signed long long ARCH(11) 1

Note:

1. This prototype has the exact same semantics as that in the OpenPOWER ABI for
Linux Supplement for the Power Architecture 64-bit ELF V2 ABI, Revision 1.4.

vec_srab: Vector Shift Right Arithmetic by Byte

d = vec_srab(a, b)

Performs an algebraic right shift for a vector by a given number of bytes. Each element of the result is
obtained by shifting the corresponding element of a right by the number of bytes specified by bits 1-4 of
byte element seven of b. The bits that are shifted out are replaced by copies of the most significant bit of
the element of a.

Table 186. Vector Shift Right Arithmetic by Byte

d a b MIN ARCH

vector unsigned char vector unsigned char vector unsigned char ARCH(11)

vector signed char ARCH(11)

vector signed char vector signed char vector unsigned char ARCH(11)

vector signed char ARCH(11)

vector unsigned short vector unsigned short vector unsigned short ARCH(11)

vector signed short ARCH(11)

vector signed short vector signed short vector unsigned short ARCH(11)

vector signed short ARCH(11)

vector unsigned int vector unsigned int vector unsigned int ARCH(11)

vector signed int ARCH(11)

vector signed int vector signed int vector unsigned int ARCH(11)

vector signed int ARCH(11)

130 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

Table 186. Vector Shift Right Arithmetic by Byte (continued)

d a b MIN ARCH

vector unsigned long long vector unsigned long long vector unsigned long long ARCH(11)

vector signed long long ARCH(11)

vector signed long long vector signed long long vector unsigned long long ARCH(11)

vector signed long long ARCH(11)

vector float vector float vector unsigned int ARCH(12)

vector signed int ARCH(12)

vector double vector double vector unsigned long long ARCH(11)

vector signed long long ARCH(11)

vec_sral: Vector Shift Right Arithmetic

d = vec_sral(a, b)

Performs an algebraic right shift for a vector by a given number of bits. Each element of the result is
obtained by shifting the corresponding element of a right by the number of bits specified by the last 3 bits
of every byte of b. The bits that are shifted out are replaced by copies of the most significant bit of the
element of a.

Note: The low-order 3 bits of all byte elements in b must be the same, otherwise the result is undefined.

Table 187. Vector Shift Right Arithmetic

d a b MIN ARCH

vector unsigned char vector unsigned char vector unsigned char ARCH(11)

vector signed char vector signed char ARCH(11)

vector unsigned short vector unsigned short ARCH(11)

vector signed short vector signed short ARCH(11)

vector unsigned int vector unsigned int ARCH(11)

vector signed int vector signed int ARCH(11)

vector unsigned long long vector unsigned long long ARCH(11)

vector signed long long vector signed long long ARCH(11)

vector bool long long vector bool long long ARCH(11)

vec_srb: Vector Shift Right by Byte

d = vec_srb(a, b)

Performs a right shift for a vector by a given number of bytes. Each element of the result is obtained by
shifting the corresponding element of a right by the number of bytes specified by bits 1-4 of byte element
seven of b. The bits that are shifted out are replaced by zeros.

Chapter 3. Using vector programming support 131

Table 188. Vector Shift Right by Byte

d a b MIN ARCH

vector unsigned char vector unsigned char vector unsigned char ARCH(11)

vector signed char ARCH(11)

vector signed char vector signed char vector unsigned char ARCH(11)

vector signed char ARCH(11)

vector unsigned short vector unsigned short vector unsigned short ARCH(11)

vector signed short ARCH(11)

vector signed short vector signed short vector unsigned short ARCH(11)

vector signed short ARCH(11)

vector unsigned int vector unsigned int vector unsigned int ARCH(11)

vector signed int ARCH(11)

vector signed int vector signed int vector unsigned int ARCH(11)

vector signed int ARCH(11)

vector unsigned long long vector unsigned long long vector unsigned long long ARCH(11)

vector signed long long ARCH(11)

vector signed long long vector signed long long vector unsigned long long ARCH(11)

vector signed long long ARCH(11)

vector float vector float vector unsigned int ARCH(12)

vector signed int ARCH(12)

vector double vector double vector unsigned long long ARCH(11)

vector signed long long ARCH(11)

vec_srl: Vector Shift Right

d = vec_srl(a, b)

Performs a right shift for a vector by a given number of bits. Each element of the result is obtained by
shifting the corresponding element of a right by the number of bits specified by the last 3 bits of every
byte of b. The bits that are shifted out are replaced by zeros.

Note: The low-order 3 bits of all byte elements in b must be the same, otherwise the result is undefined.

132 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

Table 189. Vector Shift Right

d a b MIN ARCH

vector unsigned char vector unsigned char vector unsigned char ARCH(11) 1

vector signed char vector signed char ARCH(11) 1

vector unsigned short vector unsigned short ARCH(11) 1

vector signed short vector signed short ARCH(11) 1

vector unsigned int vector unsigned int ARCH(11) 1

vector signed int vector signed int ARCH(11) 1

vector unsigned long long vector unsigned long long ARCH(11) 1

vector signed long long vector signed long long ARCH(11) 1

Note:

1. This prototype has the exact same semantics as that in the OpenPOWER ABI for
Linux Supplement for the Power Architecture 64-bit ELF V2 ABI, Revision 1.4.

Rounding and Conversion
This section describes vector built-in functions for rounding and conversion.

vec_ceil: Vector Ceiling

d = vec_ceil(a)

Returns a vector containing the smallest representable floating-point integral values greater than or equal
to the values of the corresponding elements of the given vector.

Note: vec_ceil provides the same functionality as vec_roundp, except that vec_ceil could trigger
the IEEE-inexact exception.

Table 190. Vector Ceiling

d a MIN ARCH

vector float vector float ARCH(12) 2

vector double vector double ARCH(11) 2

Note:

This prototype has slightly different semantics than that in the OpenPOWER ABI for Linux Supplement
for the Power Architecture 64-bit ELF V2 ABI, Revision 1.4. In Enterprise Metal C for z/OS, vec_ceil
could trigger the IEEE-inexact exception.

Related reference
“vec_roundp: Vector Round toward Positive Infinity” on page 137

vec_double: Vector Convert from long long to double

d = vec_double(a)

Converts a vector of long long integers into a vector of double-precision numbers.

Note: Current BFP rounding mode is used on the conversion.

Chapter 3. Using vector programming support 133

Table 191. Vector Convert from Logical

d a MIN ARCH

vector double vector signed long long ARCH(11) 1

vector unsigned long long ARCH(11) 1

Note:

1. This prototype has the exact same semantics as that in the OpenPOWER ABI for
Linux Supplement for the Power Architecture 64-bit ELF V2 ABI, Revision 1.4.

vec_doublee: Vector Convert from float (even elements) to double

d = vec_doublee(a)

Converts an input vector to a vector of double-precision numbers. Elements 0 and 2 from a are converted
to double-precision numbers and placed in elements 0 and 1 in d respectively.

Table 192. Vector Load Lengthened

d a MIN ARCH

vector double vector float ARCH(12) 1

Note:

1. This prototype has the exact same semantics as that in the OpenPOWER ABI for
Linux Supplement for the Power Architecture 64-bit ELF V2 ABI, Revision 1.4.

vec_extend_s64: Vector Sign Extend to Doubleword

d = vec_extend_s64(a)

Returns a vector with sign-extended on the rightmost element-sized sub-element of each doubleword.

Table 193. Extend Sign to Doubleword

d a MIN ARCH

vector signed long long vector signed char ARCH(11)

vector signed long long vector signed short ARCH(11)

vector signed long long vector signed int ARCH(11)

vec_floate: Vector Convert from double to float (even elements)

d = vec_floate(a)

Converts an input vector to a vector of single-precision numbers. The even-numbered target elements are
obtained by converting the source elements to single-precision numbers.

Table 194. Vector Load Rounded

d a MIN ARCH

vector float vector double ARCH(12) 1

134 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

Table 194. Vector Load Rounded (continued)

d a MIN ARCH

Note:

1. This prototype has the exact same semantics as that in the OpenPOWER ABI for
Linux Supplement for the Power Architecture 64-bit ELF V2 ABI, Revision 1.4.

vec_floor: Vector Floor

d = vec_floor(a)

Returns a vector containing the largest representable floating-point integral values less than or equal to
the values of the corresponding elements of the given vector.

Note: vec_floor provides the same functionality as vec_roundm, except that vec_floor could trigger
the IEEE-inexact exception.

Table 195. Vector Floor

d a MIN ARCH

vector float vector float ARCH(12) 2

vector double vector double ARCH(11) 2

Note:

This prototype has slightly different semantics than that in the OpenPOWER ABI for Linux Supplement
for the Power Architecture 64-bit ELF V2 ABI, Revision 1.4. In Enterprise Metal C for z/OS, vec_floor
could trigger the IEEE-inexact exception.

Related reference
“vec_roundm: Vector Round toward Negative Infinity” on page 136

vec_rint: Vector Round to Integer

d = vec_rint(a)

Returns a vector by using the current rounding mode to round every double-precision floating-point
element in the given vector to integer.

Note: vec_rint provides the same functionality as vec_roundc, except that vec_rint could trigger
the IEEE-inexact exception.

Table 196. Vector Round to Integer

d a MIN ARCH

vector float vector float ARCH(12) 2

vector double vector double ARCH(11) 2

Note:

This prototype has slightly different semantics than that in the OpenPOWER ABI for Linux Supplement
for the Power Architecture 64-bit ELF V2 ABI, Revision 1.4. In Enterprise Metal C for z/OS, vec_rint
could trigger the IEEE-inexact exception.

Related reference
“vec_roundc: Vector Round to Current” on page 136

Chapter 3. Using vector programming support 135

vec_round: Vector Round to Nearest

d = vec_round(a)

Returns a vector containing the rounded values to the nearest representable floating-point integer, using
IEEE round-to-nearest rounding, of the corresponding elements of the given vector.

Note: IEEE-inexact exception is suppressed.

Table 197. Vector Round to Nearest

d a MIN ARCH

vector float vector float ARCH(12) 1

vector double vector double ARCH(11) 1

Note:

1. This prototype has slightly different semantics than that in the OpenPOWER ABI
for Linux Supplement for the Power Architecture 64-bit ELF V2 ABI, Revision 1.4.

vec_roundc: Vector Round to Current

d = vec_roundc(a)

Returns a vector by using the current rounding mode to round every double-precision floating-point
element in the given vector to integer.

Note: vec_roundc provides the same functionality as vec_rint, except that vec_roundc does not
trigger the IEEE-inexact exception.

Table 198. Vector Round to Current

d a MIN ARCH

vector float vector float ARCH(12)

vector double vector double ARCH(11)

Related reference
“vec_rint: Vector Round to Integer” on page 135

vec_roundm: Vector Round toward Negative Infinity

d = vec_roundm(a)

Returns a vector containing the largest representable floating-point integral values less than or equal to
the values of the corresponding elements of the given vector.

Note: vec_roundm provides the same functionality as vec_floor, except that vec_roundm would not
trigger the IEEE-inexact exception.

Table 199. Vector Round toward Negative Infinity

d a MIN ARCH

vector float vector float ARCH(12)

vector double vector double ARCH(11)

Related reference
“vec_floor: Vector Floor” on page 135

136 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

vec_roundp: Vector Round toward Positive Infinity

d = vec_roundp(a)

Returns a vector containing the smallest representable floating-point integral values greater than or equal
to the values of the corresponding elements of the given vector.

Note: vec_roundp provides the same functionality as vec_ceil, except that vec_roundp would not
trigger the IEEE-inexact exception.

Table 200. Vector Round toward Positive Infinity

d a MIN ARCH

vector float vector float ARCH(12)

vector double vector double ARCH(11)

Related reference
“vec_ceil: Vector Ceiling” on page 133

vec_roundz: Vector Round toward Zero

d = vec_roundz(a)

Returns a vector containing the truncated values of the corresponding elements of the given vector. Each
element of the result contains the value of the corresponding element of a, truncated to an integral value.

Note: vec_roundz provides the same functionality as vec_trunc, except that vec_roundz would not
trigger the IEEE-inexact exception.

Table 201. Vector Round toward Zero

d a MIN ARCH

vector float vector float ARCH(12)

vector double vector double ARCH(11)

vec_signed: Vector Convert double to signed long long

d = vec_signed(a)

Converts a vector of double-precision numbers to a vector of signed integers, rounding toward 0. Each
element of d is converted from the corresponding element of a.

Table 202. Vector Convert double to signed long long

d a MIN ARCH

vector signed long long vector double ARCH(11) 1

Note:

1. This prototype has the exact same semantics as that in the OpenPOWER ABI for
Linux Supplement for the Power Architecture 64-bit ELF V2 ABI, Revision 1.4.

vec_trunc: Vector Truncate

d = vec_trunc(a)

Returns a vector containing the truncated values of the corresponding elements of the given vector. Each
element of the result contains the value of the corresponding element of a, truncated to an integral value.

Chapter 3. Using vector programming support 137

Note: vec_trunc provides the same functionality as vec_roundz, except that vec_trunc could trigger
the IEEE-inexact exception.

Table 203. Vector Truncate

d a MIN ARCH

vector float vector float ARCH(12) 2

vector double vector double ARCH(11) 2

Note:

2. This prototype has slightly different semantics than that in the OpenPOWER ABI for Linux
Supplement for the Power Architecture 64-bit ELF V2 ABI, Revision 1.4. In Enterprise Metal C for z/OS,
vec_trunc could trigger the IEEE-inexact exception.

Related reference
“vec_roundz: Vector Round toward Zero” on page 137

vec_unsigned: Vector Convert double to unsigned long long

d = vec_unsigned(a)

Converts a vector of double-precision numbers to a vector of unsigned integers, rounding toward 0. Each
element of d is converted from the corresponding element of a.

Table 204. Vector Convert double to unsigned long long

d a MIN ARCH

vector unsigned long long vector double ARCH(11) 1

Note:

1. This prototype has the exact same semantics as that in the OpenPOWER ABI for
Linux Supplement for the Power Architecture 64-bit ELF V2 ABI, Revision 1.4.

Test
This section describes vector built-in functions for testing.

vec_fp_test_data_class: Vector Floating-Point Test Data Class

d = vec_fp_test_data_class (a, b, c)

Performs a test of the BFP element class on the vector element a, based on the specified condition b,
using the VECTOR FP TEST DATA CLASS IMMEDIATE (VFTCIDB) instruction. The condition code set by
the VFTCIDB instruction is returned through c.

d represents the first operand in the instruction.

a represents the second operand in the instruction.

b represents the third operand in the instruction. You can use the __VEC_CLASS_FP_* macros that are
defined in builtins.h as the argument for this operand.

Table 205. Vector Floating-Point Test Data Class

d a b c MIN ARCH

vector bool int vector float 0 - 4095 int * ARCH(12)

vector bool long long vector double ARCH(11)

138 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

The following macros define the constants that can be used as the argument b of
vec_fp_test_data_class. These macros are defined in builtins.h.

#define __VEC_CLASS_FP_ZERO_P (1 << 11)

#define __VEC_CLASS_FP_ZERO_N (1 << 10)

#define __VEC_CLASS_FP_ZERO (__VEC_CLASS_FP_ZERO_P | __VEC_CLASS_FP_ZERO_N)

#define __VEC_CLASS_FP_NORMAL_P (1 << 9)

#define __VEC_CLASS_FP_NORMAL_N (1 << 8)

#define __VEC_CLASS_FP_NORMAL (__VEC_CLASS_FP_NORMAL_P | __VEC_CLASS_FP_NORMAL_N)

#define __VEC_CLASS_FP_SUBNORMAL_P (1 << 7)

#define __VEC_CLASS_FP_SUBNORMAL_N (1 << 6)

#define __VEC_CLASS_FP_SUBNORMAL (__VEC_CLASS_FP_SUBNORMAL_P | __VEC_CLASS_FP_SUBNORMAL_N)

#define __VEC_CLASS_FP_INFINITY_P (1 << 5)

#define __VEC_CLASS_FP_INFINITY_N (1 << 4)

#define __VEC_CLASS_FP_INFINITY (__VEC_CLASS_FP_INFINITY_P | __VEC_CLASS_FP_INFINITY_N)

#define __VEC_CLASS_FP_QNAN_P (1 << 3)

#define __VEC_CLASS_FP_QNAN_N (1 << 2)

#define __VEC_CLASS_FP_QNAN (__VEC_CLASS_FP_QNAN_P | __VEC_CLASS_FP_QNAN_N)

#define __VEC_CLASS_FP_SNAN_P (1 << 1)

#define __VEC_CLASS_FP_SNAN_N (1 << 0)

#define __VEC_CLASS_FP_SNAN (__VEC_CLASS_FP_SNAN_P | __VEC_CLASS_FP_SNAN_N)

#define __VEC_CLASS_FP_NAN (__VEC_CLASS_FP_QNAN | __VEC_CLASS_FP_SNAN)

#define __VEC_CLASS_FP_NOT_NORMAL (__VEC_CLASS_FP_NAN | __VEC_CLASS_FP_SUBNORMAL |
__VEC_CLASS_FP_ZERO | __VEC_CLASS_FP_INFINITY)

vec_test_mask: Vector Test under Mask

d = vec_test_mask(a, b)

Returns the condition code set by the Vector Test Under Mask (VTM) instruction. a is the first operand,
and b is the second operand on the instruction.

Chapter 3. Using vector programming support 139

Table 206. Vector Test under Mask

d a b MIN ARCH

int vector signed char vector unsigned char ARCH(11)

vector unsigned char ARCH(11)

vector signed short vector unsigned short ARCH(11)

vector unsigned short ARCH(11)

vector signed int vector unsigned int ARCH(11)

vector unsigned int ARCH(11)

vector signed long long vector unsigned long long ARCH(11)

vector unsigned long long ARCH(11)

vector float vector unsigned int ARCH(12)

vector double vector unsigned long long ARCH(11)

All Predicates
This section describes vector built-in functions for searching and comparing all elements.

vec_all_eq: All Elements Equal

d = vec_all_eq(a, b)

Tests whether all sets of corresponding elements of the given vectors are equal. The result is 1 if each
element of a is equal to the corresponding element of b. Otherwise, the result is 0.

Table 207. All Elements Equal

d a b MIN ARCH

int vector bool char vector bool char ARCH(11) 1

vector signed char vector signed char ARCH(11) 1

vector unsigned char vector unsigned char ARCH(11) 1

vector bool short vector bool short ARCH(11) 1

vector signed short vector signed short ARCH(11) 1

vector unsigned short vector unsigned short ARCH(11) 1

vector bool int vector bool int ARCH(11) 1

vector signed int vector signed int ARCH(11) 1

vector unsigned int vector unsigned int ARCH(11) 1

vector bool long long vector bool long long ARCH(11) 1

vector signed long long vector signed long long ARCH(11) 1

vector unsigned long long vector unsigned long long ARCH(11) 1

vector float vector float ARCH(12) 1

vector double vector double ARCH(11) 1

140 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

Table 207. All Elements Equal (continued)

d a b MIN ARCH

Note:

1. This prototype has the exact same semantics as that in the OpenPOWER ABI for
Linux Supplement for the Power Architecture 64-bit ELF V2 ABI, Revision 1.4.

vec_all_ge: All Elements Greater Than or Equal

d = vec_all_ge(a, b)

Tests whether all elements of the first argument are greater than or equal to the corresponding elements
of the second argument. The result is 1 if all elements of a are greater than or equal to the corresponding
elements of b. Otherwise, the result is 0.

Table 208. All Elements Greater Than or Equal

d a b MIN ARCH

int vector signed char vector signed char ARCH(11) 1

vector unsigned char vector unsigned char ARCH(11) 1

vector signed short vector signed short ARCH(11) 1

vector unsigned short vector unsigned short ARCH(11) 1

vector signed int vector signed int ARCH(11) 1

vector unsigned int vector unsigned int ARCH(11) 1

vector signed long long vector signed long long ARCH(11) 1

vector unsigned long long vector unsigned long long ARCH(11) 1

vector float vector float ARCH(12) 1

vector double vector double ARCH(11) 1

Note:

1. This prototype has the exact same semantics as that in the OpenPOWER ABI for
Linux Supplement for the Power Architecture 64-bit ELF V2 ABI, Revision 1.4.

vec_all_gt: All Elements Greater Than

d = vec_all_gt(a, b)

Tests whether all elements of the first argument are greater than the corresponding elements of the
second argument. The result is 1 if all elements of a are greater than the corresponding elements of b.
Otherwise, the result is 0.

Chapter 3. Using vector programming support 141

Table 209. All Elements Greater Than

d a b MIN ARCH

int vector signed char vector signed char ARCH(11) 1

vector unsigned char vector unsigned char ARCH(11) 1

vector signed short vector signed short ARCH(11) 1

vector unsigned short vector unsigned short ARCH(11) 1

vector signed int vector signed int ARCH(11) 1

vector unsigned int vector unsigned int ARCH(11) 1

vector signed long long vector signed long long ARCH(11) 1

vector unsigned long long vector unsigned long long ARCH(11) 1

vector float vector float ARCH(12) 1

vector double vector double ARCH(11) 1

Note:

1. This prototype has the exact same semantics as that in the OpenPOWER ABI for
Linux Supplement for the Power Architecture 64-bit ELF V2 ABI, Revision 1.4.

vec_all_le: All Elements Less Than or Equal

d = vec_all_le(a, b)

Tests whether all elements of the first argument are less than or equal to the corresponding elements of
the second argument. The result is 1 if all elements of a are less than or equal to the corresponding
elements of b. Otherwise, the result is 0.

Table 210. All Elements Less Than or Equal

d a b MIN ARCH

int vector signed char vector signed char ARCH(11) 1

vector unsigned char vector unsigned char ARCH(11) 1

vector signed short vector signed short ARCH(11) 1

vector unsigned short vector unsigned short ARCH(11) 1

vector signed int vector signed int ARCH(11) 1

vector unsigned int vector unsigned int ARCH(11) 1

vector signed long long vector signed long long ARCH(11) 1

vector unsigned long long vector unsigned long long ARCH(11) 1

vector float vector float ARCH(12) 1

vector double vector double ARCH(11) 1

Note:

1. This prototype has the exact same semantics as that in the OpenPOWER ABI for
Linux Supplement for the Power Architecture 64-bit ELF V2 ABI, Revision 1.4.

142 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

vec_all_lt: All Elements Less Than

d = vec_all_lt(a, b)

Tests whether all elements of the first argument are less than the corresponding elements of the second
argument. The result is 1 if all elements of a are less than the corresponding elements of b. Otherwise,
the result is 0.

Table 211. All Elements Less Than

d a b MIN ARCH

int vector signed char vector signed char ARCH(11) 1

vector unsigned char vector unsigned char ARCH(11) 1

vector signed short vector signed short ARCH(11) 1

vector unsigned short vector unsigned short ARCH(11) 1

vector signed int vector signed int ARCH(11) 1

vector unsigned int vector unsigned int ARCH(11) 1

vector signed long long vector signed long long ARCH(11) 1

vector unsigned long long vector unsigned long long ARCH(11) 1

vector float vector float ARCH(12) 1

vector double vector double ARCH(11) 1

Note:

1. This prototype has the exact same semantics as that in the OpenPOWER ABI for
Linux Supplement for the Power Architecture 64-bit ELF V2 ABI, Revision 1.4.

vec_all_nan: All Elements Not a Number

d = vec_all_nan(a)

Tests whether each element of the given vector is a NaN. The result is 1 if each element of a is a NaN.
Otherwise, the result is 0.

Table 212. All Elements Not a Number

d a MIN ARCH

int vector float ARCH(12) 1

vector double ARCH(11) 1

Note:

1. This prototype has the exact same semantics as that in the OpenPOWER ABI for
Linux Supplement for the Power Architecture 64-bit ELF V2 ABI, Revision 1.4.

vec_all_ne: All Elements Not Equal

d = vec_all_ne(a, b)

Tests whether all sets of corresponding elements of the given vectors are not equal. The result is 1 if each
element of a is not equal to the corresponding element of b. Otherwise, the result is 0.

Chapter 3. Using vector programming support 143

Table 213. All Elements Not Equal

d a b MIN ARCH

int vector bool char vector bool char ARCH(11) 1

vector signed char vector signed char ARCH(11) 1

vector unsigned char vector unsigned char ARCH(11) 1

vector bool short vector bool short ARCH(11) 1

vector signed short vector signed short ARCH(11) 1

vector unsigned short vector unsigned short ARCH(11) 1

vector bool int vector bool int ARCH(11) 1

vector signed int vector signed int ARCH(11) 1

vector unsigned int vector unsigned int ARCH(11) 1

vector bool long long vector bool long long ARCH(11) 1

vector signed long long vector signed long long ARCH(11) 1

vector unsigned long long vector unsigned long long ARCH(11) 1

vector float vector float ARCH(12) 1

vector double vector double ARCH(11) 1

Note:

1. This prototype has the exact same semantics as that in the OpenPOWER ABI for
Linux Supplement for the Power Architecture 64-bit ELF V2 ABI, Revision 1.4.

vec_all_nge: All Elements Not Greater Than or Equal

d = vec_all_nge(a, b)

Tests whether each element of the first argument is not greater than or equal to the corresponding
element of the second argument. The result is 1 if each element of a is not greater than or equal to the
corresponding element of b. Otherwise, the result is 0.

Table 214. All Elements Not Greater Than or Equal

d a b MIN ARCH

int vector float vector float ARCH(12) 1

vector double vector double ARCH(11) 1

Note:

1. This prototype has the exact same semantics as that in the OpenPOWER ABI for
Linux Supplement for the Power Architecture 64-bit ELF V2 ABI, Revision 1.4.

vec_all_ngt: All Elements Not Greater Than

d = vec_all_ngt(a, b)

Tests whether each element of the first argument is not greater than the corresponding element of the
second argument. The result is 1 if each element of a is not greater than the corresponding element of b.
Otherwise, the result is 0.

144 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

Table 215. All Elements Not Greater Than

d a b MIN ARCH

int vector float vector float ARCH(12) 1

vector double vector double ARCH(11) 1

Note:

1. This prototype has the exact same semantics as that in the OpenPOWER ABI for
Linux Supplement for the Power Architecture 64-bit ELF V2 ABI, Revision 1.4.

vec_all_nle: All Elements Not Less Than or Equal

d = vec_all_nle(a, b)

Tests whether each element of the first argument is not less than or equal to the corresponding element
of the second argument. The result is 1 if each element of a is not less than or equal to the corresponding
element of b. Otherwise, the result is 0.

Table 216. All Elements Not Less Than or Equal

d a b MIN ARCH

int vector float vector float ARCH(12) 1

vector double vector double ARCH(11) 1

Note:

1. This prototype has the exact same semantics as that in the OpenPOWER ABI for
Linux Supplement for the Power Architecture 64-bit ELF V2 ABI, Revision 1.4.

vec_all_nlt: All Elements Not Less Than

d = vec_all_nlt(a, b)

Tests whether each element of the first argument is not less than the corresponding element of the
second argument. The result is 1 if each element of a is not less than the corresponding element of b.
Otherwise, the result is 0.

Table 217. All Elements Not Less Than

d a b MIN ARCH

int vector float vector float ARCH(12) 1

vector double vector double ARCH(11) 1

Note:

1. This prototype has the exact same semantics as that in the OpenPOWER ABI for
Linux Supplement for the Power Architecture 64-bit ELF V2 ABI, Revision 1.4.

vec_all_numeric: All Elements Numeric

d = vec_all_numeric(a)

Tests whether each element of the given vector is numeric (not a NaN). The result is 1 if each element of a
is numeric (not a NaN). Otherwise, the result is 0.

Chapter 3. Using vector programming support 145

Table 218. All Elements Numeric

d a MIN ARCH

int vector float ARCH(12) 1

vector double ARCH(11) 1

Note:

1. This prototype has the exact same semantics as that in the OpenPOWER ABI for
Linux Supplement for the Power Architecture 64-bit ELF V2 ABI, Revision 1.4.

Any Predicates
This section describes vector built-in functions for searching and comparing any elements.

vec_any_eq: Any Element Equal

d = vec_any_eq(a, b)

Tests whether any set of corresponding elements of the given vectors are equal. The result is 1 if any
element of a is equal to the corresponding element of b. Otherwise, the result is 0.

Table 219. Any Element Equal

d a b MIN ARCH

int vector bool char vector bool char ARCH(11) 1

vector signed char vector signed char ARCH(11) 1

vector unsigned char vector unsigned char ARCH(11) 1

vector bool short vector bool short ARCH(11) 1

vector signed short vector signed short ARCH(11) 1

vector unsigned short vector unsigned short ARCH(11) 1

vector bool int vector bool int ARCH(11) 1

vector signed int vector signed int ARCH(11) 1

vector unsigned int vector unsigned int ARCH(11) 1

vector bool long long vector bool long long ARCH(11) 1

vector signed long long vector signed long long ARCH(11) 1

vector unsigned long long vector unsigned long long ARCH(11) 1

vector float vector float ARCH(12) 1

vector double vector double ARCH(11) 1

Note:

1. This prototype has the exact same semantics as that in the OpenPOWER ABI for
Linux Supplement for the Power Architecture 64-bit ELF V2 ABI, Revision 1.4.

vec_any_ge: Any Element Greater Than or Equal

d = vec_any_ge(a, b)

146 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

Tests whether any element of the first argument is greater than or equal to the corresponding element of
the second argument. The result is 1 if any element of a is greater than or equal to the corresponding
element of b. Otherwise, the result is 0.

Table 220. Any Element Greater Than or Equal

d a b MIN ARCH

int vector signed char vector signed char ARCH(11) 1

vector unsigned char vector unsigned char ARCH(11) 1

vector signed short vector signed short ARCH(11) 1

vector unsigned short vector unsigned short ARCH(11) 1

vector signed int vector signed int ARCH(11) 1

vector unsigned int vector unsigned int ARCH(11) 1

vector signed long long vector signed long long ARCH(11) 1

vector unsigned long long vector unsigned long long ARCH(11) 1

vector float vector float ARCH(12) 1

vector double vector double ARCH(11) 1

Note:

1. This prototype has the exact same semantics as that in the OpenPOWER ABI for
Linux Supplement for the Power Architecture 64-bit ELF V2 ABI, Revision 1.4.

vec_any_gt: Any Element Greater Than

d = vec_any_gt(a, b)

Tests whether any element of the first argument is greater than the corresponding element of the second
argument. The result is 1 if any element of a is greater than the corresponding element of b. Otherwise,
the result is 0.

Table 221. Any Element Greater Than

d a b MIN ARCH

int vector signed char vector signed char ARCH(11) 1

vector unsigned char vector unsigned char ARCH(11) 1

vector signed short vector signed short ARCH(11) 1

vector unsigned short vector unsigned short ARCH(11) 1

vector signed int vector signed int ARCH(11) 1

vector unsigned int vector unsigned int ARCH(11) 1

vector signed long long vector signed long long ARCH(11) 1

vector unsigned long long vector unsigned long long ARCH(11) 1

vector float vector float ARCH(12) 1

vector double vector double ARCH(11) 1

Chapter 3. Using vector programming support 147

Table 221. Any Element Greater Than (continued)

d a b MIN ARCH

Note:

1. This prototype has the exact same semantics as that in the OpenPOWER ABI for
Linux Supplement for the Power Architecture 64-bit ELF V2 ABI, Revision 1.4.

vec_any_le: Any Element Less Than or Equal

d = vec_any_le(a, b)

Tests whether any element of the first argument is less than or equal to the corresponding element of the
second argument. The result is 1 if any element of a is less than or equal to the corresponding element of
b. Otherwise, the result is 0.

Table 222. Any Element Less Than or Equal

d a b MIN ARCH

int vector signed char vector signed char ARCH(11) 1

vector unsigned char vector unsigned char ARCH(11) 1

vector signed short vector signed short ARCH(11) 1

vector unsigned short vector unsigned short ARCH(11) 1

vector signed int vector signed int ARCH(11) 1

vector unsigned int vector unsigned int ARCH(11) 1

vector signed long long vector signed long long ARCH(11) 1

vector unsigned long long vector unsigned long long ARCH(11) 1

vector float vector float ARCH(12) 1

vector double vector double ARCH(11) 1

Note:

1. This prototype has the exact same semantics as that in the OpenPOWER ABI for
Linux Supplement for the Power Architecture 64-bit ELF V2 ABI, Revision 1.4.

vec_any_lt: Any Element Less Than

d = vec_any_lt(a, b)

Tests whether any element of the first argument is less than the corresponding element of the second
argument. The result is 1 if any element of a is less than the corresponding element of b. Otherwise, the
result is 0.

148 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

Table 223. Any Element Less Than

d a b MIN ARCH

int vector signed char vector signed char ARCH(11) 1

vector unsigned char vector unsigned char ARCH(11) 1

vector signed short vector signed short ARCH(11) 1

vector unsigned short vector unsigned short ARCH(11) 1

vector signed int vector signed int ARCH(11) 1

vector unsigned int vector unsigned int ARCH(11) 1

vector signed long long vector signed long long ARCH(11) 1

vector unsigned long long vector unsigned long long ARCH(11) 1

vector float vector float ARCH(12) 1

vector double vector double ARCH(11) 1

Note:

1. This prototype has the exact same semantics as that in the OpenPOWER ABI for
Linux Supplement for the Power Architecture 64-bit ELF V2 ABI, Revision 1.4.

vec_any_ne: Any Element Not Equal

d = vec_any_ne(a, b)

Tests whether any set of corresponding elements of the given vectors are not equal. The result is 1 if any
element of a is not equal to the corresponding element of b. Otherwise, the result is 0.

Table 224. Any Element Not Equal

d a b MIN ARCH

int vector bool char vector bool char ARCH(11) 1

vector signed char vector signed char ARCH(11) 1

vector unsigned char vector unsigned char ARCH(11) 1

vector bool short vector bool short ARCH(11) 1

vector signed short vector signed short ARCH(11) 1

vector unsigned short vector unsigned short ARCH(11) 1

vector bool int vector bool int ARCH(11) 1

vector signed int vector signed int ARCH(11) 1

vector unsigned int vector unsigned int ARCH(11) 1

vector bool long long vector bool long long ARCH(11) 1

vector signed long long vector signed long long ARCH(11) 1

vector unsigned long long vector unsigned long long ARCH(11) 1

vector float vector float ARCH(12) 1

vector double vector double ARCH(11) 1

Chapter 3. Using vector programming support 149

Table 224. Any Element Not Equal (continued)

d a b MIN ARCH

Note:

1. This prototype has the exact same semantics as that in the OpenPOWER ABI for
Linux Supplement for the Power Architecture 64-bit ELF V2 ABI, Revision 1.4.

vec_any_nan: Any Element Not a Number

d = vec_any_nan(a)

Tests whether any element of the given vector is a NaN. The result is 1 if any element of a is a NaN.
Otherwise, the result is 0.

Table 225. Any Element Not a Number

d a MIN ARCH

int vector float ARCH(12) 1

vector double ARCH(11) 1

Note:

1. This prototype has the exact same semantics as that in the OpenPOWER ABI for
Linux Supplement for the Power Architecture 64-bit ELF V2 ABI, Revision 1.4.

vec_any_nge: Any Element Not Greater Than or Equal

d = vec_any_nge(a, b)

Tests whether any element of the first argument is not greater than or equal to the corresponding
element of the second argument. The result is 1 if any element of a is not greater than or equal to the
corresponding element of b. Otherwise, the result is 0.

Table 226. Any Element Not Greater Than or Equal

d a b MIN ARCH

int vector float vector float ARCH(12) 1

vector double vector double ARCH(11) 1

Note:

1. This prototype has the exact same semantics as that in the OpenPOWER ABI for
Linux Supplement for the Power Architecture 64-bit ELF V2 ABI, Revision 1.4.

vec_any_ngt: Any Element Not Greater Than

d = vec_any_ngt(a, b)

Tests whether any element of the first argument is not greater than the corresponding element of the
second argument. The result is 1 if any element of a is not greater than the corresponding element of b.
Otherwise, the result is 0.

150 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

Table 227. Any Element Not Greater Than

d a b MIN ARCH

int vector float vector float ARCH(12) 1

vector double vector double ARCH(11) 1

Note:

1. This prototype has the exact same semantics as that in the OpenPOWER ABI for
Linux Supplement for the Power Architecture 64-bit ELF V2 ABI, Revision 1.4.

vec_any_nle: Any Element Not Less Than or Equal

d = vec_any_nle(a, b)

Tests whether any element of the first argument is not less than or equal to the corresponding element of
the second argument. The result is 1 if any element of a is not less than or equal to the corresponding
element of b. Otherwise, the result is 0.

Table 228. Any Element Not Less Than or Equal

d a b MIN ARCH

int vector float vector float ARCH(12) 1

vector double vector double ARCH(11) 1

Note:

1. This prototype has the exact same semantics as that in the OpenPOWER ABI for
Linux Supplement for the Power Architecture 64-bit ELF V2 ABI, Revision 1.4.

vec_any_nlt: Any Element Not Less Than

d = vec_any_nlt(a, b)

Tests whether any element of the first argument is not less than the corresponding element of the second
argument. The result is 1 if any element of a is not less than the corresponding element of b. Otherwise,
the result is 0.

Table 229. Any Element Not Less Than

d a b MIN ARCH

int vector float vector float ARCH(12) 1

vector double vector double ARCH(11) 1

Note:

1. This prototype has the exact same semantics as that in the OpenPOWER ABI for
Linux Supplement for the Power Architecture 64-bit ELF V2 ABI, Revision 1.4.

vec_any_numeric: Any Element Numeric

d = vec_any_numeric(a)

Tests whether any element of the given vector is numeric (not a NaN). The result is 1 if any element of a is
numeric (not a NaN). Otherwise, the result is 0.

Chapter 3. Using vector programming support 151

Table 230. Any Element Numeric

d a MIN ARCH

int vector float ARCH(12) 1

vector double ARCH(11) 1

Note:

1. This prototype has the exact same semantics as that in the OpenPOWER ABI for
Linux Supplement for the Power Architecture 64-bit ELF V2 ABI, Revision 1.4.

Defining vector built-in functions from operators
The following function-like macros can be used to define some vector built-in functions, available on the
XL C/C++ compilers for some other platforms, from the operators:

#define vec_neg(a) (-(a)) // Vector Negate
#define vec_add(a, b) ((a) + (b)) // Vector Add
#define vec_sub(a, b) ((a) - (b)) // Vector Subtract
#define vec_mul(a, b) ((a) * (b)) // Vector Multiply
#define vec_div(a, b) ((a) / (b)) // Vector Divide
#define vec_and(a, b) ((a) & (b)) // Vector AND
#define vec_or(a, b) ((a) | (b)) // Vector OR
#define vec_xor(a, b) ((a) ^ (b)) // Vector XOR
#define vec_sl(a, b) ((a) << (b)) // Vector Shift Left
#define vec_sra(a, b) ((a) >> (b)) // Vector Shift Right
#define vec_sr(a, b) ((a) >> (b)) // Vector Shift Right Algebraic
#define vec_slo(a, b) vec_slb(a, (b) << 64) // Vector Shift Left by Octet
#define vec_sro(a, b) vec_srb(a, (b) << 64) // Vector Shift Right by Octet

Note: The vec_sra macro definition must only be used with first parameter having a vector signed
types. Similarly, the vec_sr macro definition must only be used for vector unsigned types, to have
the correct bits inserted on the shifted out bits.

152 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

Part 2. Performance optimization

This part describes guidelines for improving the performance of your Enterprise Metal C for z/OS
application. Performance improvement can be achieved through coding and compiling. The following
chapters discuss guidelines for these three areas:

• Chapter 4, “Improving program performance,” on page 155
• Chapter 5, “Using built-in functions to improve performance,” on page 165
• Chapter 6, “Improving performance with compiler options,” on page 169
• Chapter 7, “Balancing compilation time and application performance,” on page 183

© Copyright IBM Corp. 2018 153

154 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

Chapter 4. Improving program performance

This information discusses coding guidelines that improve the performance of a C application. While they
are most effective when creating new code, these guidelines can also provide a gradual performance
improvement when they are consistently used when porting or fixing areas of the code. The guidelines
cover the following topics:

• “Writing code for performance” on page 155
• “ANSI aliasing rules” on page 155
• “Using ANSI aliasing rules” on page 157
• “Using variables” on page 158
• “Passing function arguments” on page 159
• “Coding expressions” on page 160
• “Coding conversions” on page 161
• “Arithmetical considerations” on page 161
• “Using loops and control constructs” on page 161
• “Choosing a data type” on page 162
• “Using #pragmas” on page 163

Writing code for performance
When you write code, it is a good practice to write it so that you can understand it when you simply read it
on a printed page or on a screen, without having to refer to anything else. If the code is simple and
concise, both the programmer and the compiler can understand it easily. Code that is easy for the
compiler to understand is also easy for it to optimize. If you follow this practice you might not only create
code that performs well on execution, you might also create code that compiles more quickly.

If you follow the guidelines in this information, you will create code that performs well on execution and
can be compiled efficiently.

ANSI aliasing rules
You must indicate whether your source code conforms to the ANSI aliasing rules when you use the IPA or
the OPT(2) (or above) compiler options. If the code does not conform to the rules, it must be compiled
with NOANSIALIAS. Incorrect use of these options might generate bad code.

Note: The compiler expects that the source code conforms to the ANSI aliasing rules when the
ANSIALIAS option is used. This option is on by default.

The ANSI aliasing rules are part of the ISO C Standard, and state that a pointer can be dereferenced only
to an object of the same type or compatible type. Because the Enterprise Metal C for z/OS compiler
follows these rules during optimization, the developer must create code that conforms to the rules.

Note: The common coding practice of casting a pointer to an incompatible type and then dereferencing it
violates ANSI aliasing rules.

When you are using ANSI aliasing, you can cast an int pointer only to the types described in Table 231
on page 156 then dereference it to access the object it points to. Corresponding casts apply to other
types.

© Copyright IBM Corp. 2018 155

Table 231. Examples of acceptable alias types

Type Reason for acceptance

int This is the declared type of the object.

const int, or volatile int, or
restrict int, or any combination
of these qualifiers

These types are the qualified version of the declared type of the object.

signed int or unsigned int This is a signed or unsigned type corresponding to the declared type of the
object.

const unsigned int or
volatile unsigned int

These types are the signed or unsigned types corresponding to a qualified
version of the declared type of the object.

struct myfunc {
unsigned int bar;
};

This is an aggregate or union type that includes one of the aforementioned
types among its members. This can include, recursively, a member of a
subaggregator-contained union.

char, unsigned char, or signed
char

The char pointers are an exception to the rules, as a char pointer can be
used to point to and dereferenced to access a variable of any type. For
example, the address passed to memcpy may be any pointer type.

Conversely, your code breaks the aliasing rules if it casts a float to an int and then assigns it to the int
pointer and dereferences that.

In C11, the typeless memory returned by malloc etc. receives the "effective type" of the first access to
it. For example, if the address returned by malloc is cast to an int* pointer and that is dereferenced to
store an initial value, then that memory's effective type becomes int, and only pointers compatible with
int can be used to access it.

For more information, see ANSIALIAS | NOANSIALIAS in .

You can cast and mix data types as long as you are careful how you intermix values and their pointers in
your code. The compiler follows the ANSI aliasing rules to determine:

• Which variables must be stored into memory before you read a value through a pointer
• Which variables must be updated from memory after you have updated a value through a pointer

When you use the NOANSIALIAS option, the compiler generates code to accommodate worst-case
assumptions (for example, that any variable could have been updated by the store through a pointer).
This means that every variable (local and global) must be stored in memory to ensure that any value can
be read through a pointer. This severely limits the potential for optimization.

int ei1;
float ef1;
int *eip1;
float *efp1;

float exmp1 ()
{
 ef1 = 3.0;
 ei1=5;
 *efp1 = ef1;
 *eip1 = ei1;
 return *efp1;
}

Table 232 on page 157 shows the difference between code generated with, and without, ANSI aliasing.

156 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

Table 232. Comparison of code generated with the ANSIALIAS and NOANSIALIAS options

ANSIALIAS RENT and OPT(2) NOANSIALIAS RENT and OPT(2)

* {
* ef1 = 3.0;
 L r4,=A(@CONSTANT_AREA)(,r3,94)
 L r2,=Q(EF1)(,r3,98)
 LD f0,+CONSTANT_AREA(,r4,0)
 L r14,_CEECAA_(,r12,500)
 L r15,=Q(EFP1)(,r3,102)
 L r4,=Q(EIP1)(,r3,106)
 L r1,#retvalptr_1(,r1,0)
 STE f0,ef1(r2,r14,0)
 L r15,efp1(r15,r14,0)

* {
* ef1 = 3.0;
 L r2,=A(@CONSTANT_AREA)(,r3,110)
 L r14,_CEECAA_(,r12,500)
 L r4,=Q(EF1)(,r3,114)
 L r15,=Q(EFP1)(,r3,118)
 LD f0,+CONSTANT_AREA(,r2,0)

* ei1=5;
 L r2,=Q(EI1)(,r3,110)
 LA r0,
 L r4,eip1(r4,r14,0)

* ei1=5;
 L r2,=Q(EI1)(,r3,122)
 STE f0,ef1(r4,r14,0)

* *efp1 = ef1;
 STE f0,(*)float(,r15,0)
 ST r0,ei1(r2,r14,0)

* *efp1 = ef1;
 L r4,efp1(r15,r14,0)

* *eip1 = ei1;
 ST r0,(*)int(,r4,0)

* *eip1 = ei1;
 L r5,=Q(EIP1)(,r3,126)
 LA r0,5
 ST r0,ei1(r2,r14,0)
 STE f0,(*)float(,r4,0)
 L r4,eip1(r5,r14,0)
 L r0,ei1(r2,r14,0)

* return *efp1;
 STD f0,#retval_1(,r1,0)
* }

* return *efp1;
 L r1,#retvalptr_1(,r1,0)
 ST r0,(*)int(,r4,0)
 L r14,efp1(r15,r14,0)
 SDR f0,f0
 LE f0,(*)float(,r14,0)
 STD f0,#retval_1(,r1,0)
* }

• In the ANSIALIAS case:

– f0, loaded with 3.0, is used whenever referring to ef1 or efp1
– r0 is loaded with the value of 5, which is used for ei and eip

• In the NOANSIALIAS case, the loads and stores are always done. This removes opportunities for optimizations. For
example, if a + b + c were used instead of 3.0 and ef1, saving through the pointer might have updated a, b, or c, and
therefore you cannot common at all, and many more reloads.

• ANSIALIAS would not help if all the floats were also integers
• There is a group of problems that occurs when the ANSIALIAS option is used to compile code that does not conform to

ANSI-aliasing rules (for example, when it casts a variable to a non-ANSI-aliasing type and then assigns the address of the
value to a pointer for later use). If the ANSIALIAS option is in effect (it is the default) when a value is used through a
pointer, the compiler might not reload the pointer value when the original value is updated, and the value might be stale
when it is read.

Using ANSI aliasing rules
Your programs are likely to perform better if you follow these guidelines:

Chapter 4. Improving program performance 157

• Use ANSI aliasing whenever possible.
• Declare constant variables with const.

ggPoint3 operator*(const ggHAffineMatrix3 &m
, const ggPoint3 &p)
 {
 return ggPoint3(
 m.e[0][0] * p.x() + m.e[0][1] * p.y() + m.e[0][2] * p.z() + m.e[0][3],
 m.e[1][0] * p.x() + m.e[1][1] * p.y() + m.e[1][2] * p.z() + m.e[1][3],
 m.e[2][0] * p.x() + m.e[2][1] * p.y() + m.e[2][2] * p.z() + m.e[2][3]
);
}

• Whenever their values cannot change, qualify pointers and their targets as constants, ensuring that you
mark the appropriate part as const.

– If only the pointer is constant, you can use a statement that is similar to the following:

int * const i = p /* a constant pointer to an integer that may vary */

– If only the target is constant, use a statement similar to either of the following:

int const * i = p /* a variable pointer to a constant integer */
const int * i = p /* a variable pointer to a constant integer */

– If both the target integer and the pointer are constants, use a statement similar to either of the
following:

const int * const i = &p; /* a constant pointer to a constant integer */
int const * const i = &p; /* a constant pointer to a constant integer */

• Use the ROCONST compiler option. This option causes the compiler to treat variables that are defined
as const as if they are read-only. In some cases, these variables will be stored in read-only memory.
For more information, see “ROCONST” on page 181.

• For global variables initialized to large read-only arrays or strings: Use a #pragma variable to ensure that
they are implemented as read-only csects. This prevents them from being initialized at load time.

Example: For large initialized arrays

pragma variable (arrayname, norent)

• In a read-only situation: If you are using the value through a pointer, use a temporary automatic
variable. The difference in the source code is significant, as shown in the following table:

Table 233. Example of using temporaries to remove aliasing effects

ANSIALIAS RENT and OPT(2) NOANSIALIAS RENT and OPT(2)

...
 while (hot_loop < hot_loop_end) {
 hot_loop = hot_loop + myfunc-
>increment;
 fun[x] = hot_loop*myfunc->expansion;
 }
}

{
...
increment = myfunc->increment;
expansion = myfunc->expansion;
 while (hot_loop < hot_loop_end) {
 hot_loop = hot_loop + increment;
 fun[x] = hot_loop*expansion;
}

Using variables
When choosing variables and data structures for your application, keep the following guidelines in mind:

• Use local variables, preferably automatic variables, as often as possible.

The compiler can accurately analyze the use of local variables, while it has to make several worst-case
assumptions about global variables, which hinders optimizations. For example, if you code a function

158 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

that uses external variables, and calls several external functions, the compiler assumes that every call
to an external function could change the value of every external variable.

• If none of the function calls affect the global variables being used and you have to read them frequently
with function calls interspersed, copy the global variables to local variables and use these local
variables to help the compiler perform optimizations that otherwise would not be done.

Using IPA can improve the performance of code written using global variables, because it coalesces
global variables. IPA puts global variables into one or more structures and accesses them using offsets
from the beginning of the structures. For more information, see “Using the IPA option” on page 175.

• If you need to share variables only between functions within the same compilation unit, use static
variables instead of external variables. Because static variables are visible only in the current source
file, they might not have to be reloaded if a call is made to a function in another source file.

Organize your source code so references to a given set of externally defined variables occur only in one
source file, and then use static variables instead of external variables.

In a file with several related functions and static variables, the compiler can group the variables and
functions together to improve locality of reference.

Use a local static variable instead of an external variable or a variable defined outside the scope of a
function.

The #pragma isolated_call preprocessor directive can improve the runtime performance of
optimized code by allowing the compiler to make fewer assumptions about the references to external
and static variables. For more information, see #pragma isolated_call in .

Coalescing global variables causes variables that are frequently used together to be mapped close
together in memory. This strategy improves performance in the same way that changing external
variables to static variables does.

• Group external data into structures (all elements of an external structure use the same base address) or
arrays wherever it makes sense to do so.

Before it can access an external variable, the compiler has to make an extra memory access to obtain
the variable’s address. The compiler removes extraneous address loads, but this means that the
compiler has to use a register to keep the address.

Using many external variables simultaneously requires many registers, thereby causing spilling of
registers to storage. If you group variables into structures then it can use a single variable to keep the
base address of the structure and use offsets to access individual items. This reduces register pressure
and improves overall performance, especially in programs compiled with the RENT option.

The compiler treats register variables the same way it treats automatic variables that do not have their
addresses taken.

• Minimize the use of pointers.

Use of pointers inhibits most memory optimizations such as dead store elimination in C.

You can improve the runtime performance of optimized code by using the #pragma disjoint
directive to list identifiers that do not share the same physical storage. A similar mechanism that can be
used to improve runtime performance of optimized code includes using the C99 restrict qualifier for
pointers feature. The restrict type qualifier indicates for the lifetime of the pointer, and only it or a value
directly derived from it will be used to access the object to which it points. For more information, see
#pragma disjoint and The restrict type qualifier in .

Passing function arguments
When writing code for optimization, it is usually better to pass a value as an argument to a function than
to let the function take the value from a global variable. Global variables might have to be stored before a
value is read from a pointer or before a function call is made. Global variables might have to be reloaded
after function calls, or stored through a pointer. For more information, see “Using ANSI aliasing rules” on
page 157 and “Using variables” on page 158.

Chapter 4. Improving program performance 159

The #pragma isolated_call preprocessor directive lists functions that do not modify global storage.
You can use it to improve the runtime performance of optimized code. For more information, see
#pragma isolated_call in .

Linkage convention or how arguments are passed is not specified in the C language, but is defined by the
platform. Compilers in general follow the calling convention as described by the Application Binary
Interface (ABI). An ABI can define more than one linkage due to performance considerations; for
example, the XPLINK on the z/OS platform. To correctly invoke a function, the arguments passed must
match the parameters as defined in the function definition. For example, if you pass a pointer argument to
a function expecting an integer, the code generated by the compiler for the call and for the function
definition may not match (see the note at the end of this topic).

As the following example shows, you can declare a function without providing information about the
number and types of its parameters.

int func();
...
int a;
func(a);
...
int func(p)
 void *p;
{
 ...
}

Because the function declaration has no parameter information, the compiler is not required to diagnose
parameter mismatch. You can call this function, passing it any number of arguments of any type, but the
compilation will not be guaranteed to work if the function is not defined to receive the arguments as
passed, due to differences in linkage conventions. In the worse case, when the compiler attempts inlining
of such ill-formed function calls, it may get into an unrecoverable condition and the compilation is halted.

Note: Such a mismatch may sometimes turn out not to be an issue, depending on the ABI; for example, if
the ABI happens to allow both pointers and integers passed using general purpose registers. Even in this
case, there is no guarantee that the optimized code would work as expected due to ambiguous
information received by the compiler.

Coding expressions
When coding expressions, consider the following recommendations:

• When components of an expression are duplicate expressions, code them either at the left end of the
expression or within parentheses, as shown in the following example.

a = b*(x*y*z); /* Duplicates recognized */
c = x*y*z*d;
e = f + (x + y);
g = x + y + h;

a = b*x*y*z; /* No duplicates recognized */
c = x*y*z*d;
e = f + x + y;
g = x + y + h;

The compiler can recognize x*y*z and x + y as duplicate expressions when they are coded in
parentheses or coded at the left end of the expression.

It is the best practice to avoid using pointers as much as possible within high-usage or other
performance-critical code.

Note: The compiler might not be able to optimize duplicate expressions if either of the following are
true:

– The address of any of the variables is already taken
– Pointers are involved in the computation

160 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

• When components of an expression in a loop are constant, code the constant expressions either at the
left end of the expression or within parentheses.

The following example shows the difference in evaluation when c, d, and e are constant and v, w, and x
are variable.

v*w*x*(c*d*e); /* Constant expressions recognized */
c + d + e + v + w + x;

v*w*x*c*d*e; /* Constant expressions not recognized */
v + w + x + c + d + e;

Coding conversions
Avoid forcing the compiler to convert numbers between integer and floating-point internal
representations. Conversions require several instructions, including some double-precision floating-point
arithmetic. When you must use mixed-mode arithmetic, code the integral, floating-point, and decimal
arithmetic in separate computations wherever possible. Figure 23 on page 161 shows an example.

/* this example shows how numeric conversions are done */

int main(void)
{
 int i;
 float array[10]={1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0}
 float x = 1.0;
 for (i = 0; i < 10; i++)
 {
 array[i] = array[i]*x; /* No conversions needed */
 x = x + 1.0;
 }

 for (i = 1; i <= 9; i++)
 array[i] = array[i]*i; /* Conversions may be needed */

 return(0);
}

Figure 23. Numeric conversions example

Arithmetical considerations
Wherever possible, use multiplication rather than division. For example,

x*(1.0/3.0); /* 1.0/3.0 is evaluated at compile time */

produces faster code than:

x/3.0;

If you divide many values by the same number in your code: Assign the divisor’s reciprocal to a temporary
variable and then multiply by that variable.

Using loops and control constructs
For the for-loop index variable:

• Use a long type variable whenever possible. Under ILP32, long and int are equivalent, but long is
better for portability to an LP64 environment.

• Use the auto or register storage class over the extern or static storage class.

Chapter 4. Improving program performance 161

• If you use an enum variable, expand the variable to be a fullword by using the ENUMSIZE compiler
option or by placing a large defined value at the end of your enum variable, as follows:

enum animals {
 ant
 cat,
 dog,
 robin,
 last_animal = INT_MAX;
};

• Do not use the address operator (&) on the index.
• The index should not be a member of a union.

For if statements:

• Order the if conditions efficiently; put the most decisive tests first and the most expensive tests last.

By performing the most common tests first, you increase the efficiency of your code; fewer tests are
required to meet the test conditions.

if (command.is_classg && command.len == 6 &&
 !strcmp (command.str, "LOGON")) /* call to strcmp() most expensive */
 logon ();

Choosing a data type
Use the int data type instead of char when performing arithmetic operations.

char_var += '0';
int_var += '0'; /* better */

A char type variable is efficient when you are:

• Assigning a literal to a char variable
• Comparing the variable with a char literal

For example:

char_var = 27;
if (char_var == 'D')

Table 234 on page 162 lists analogous data types and shows which data types are more expensive to
reference.

Table 234. Referencing data types

More Expensive Less Expensive

unsigned short signed short (Although unsigned short is less expensive on many systems, the z/OS
implementation of signed short is less expensive.)

signed char unsigned char

long double double

Longer decimal Shorter decimal

For storage efficiency, the compiler packs enumeration variables in 1, 2 or 4 bytes, depending on the
largest value of a constant. When performance is critical, expand the size to a fullword either by adding an
enumeration constant with a large value or by specifying the ENUMSIZE compiler option. For example:

162 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

enum byte { land, sea, air, space };

enum word { low, medium, high, expand_to_fullword = INT_MAX };

Example that is equivalent to using the ENUMSIZE(INT) compiler option:

enum word { low, medium, high };

Fullword enumeration variables are preferred as function parameters.

For efficient use of extern variables:

• Place scalars ahead of arrays in extern struct.
• Copy heavily referenced scalars to auto or register variables (especially in a loop).

When using float:

• When passing variables of type float to a function, an implicit widening to double occurs (which takes
time).

• On some machines divisions of type float are faster than those of type double.

When using bit fields, be aware that:

• Even though the compiler supports a bit field spanning more than 4 bytes, the cost of referencing it is
higher.

• An unsigned bit field is preferred over a signed bit field.
• A bit field used to store integer values should have a length of 8, 16, or 24 bits and be on a byte

boundary.

 struct { unsigned xval :8,
 xbool :1,
 xmany :6,
 xset :1;
 } b;

 if (b.xval == 3)
⋮
 if (b.xmany + 5 == x) /* inefficient because it does not */
 /* fall on a byte boundary */
⋮
 if (b.xbool)
⋮

Using #pragmas
Table 235 on page 163 describes #pragmas that can affect performance. For information about using
each pragma, see .

Table 235. Pragmas that affect performance

Name Description

#pragma disjoint Lists identifiers that do not share the same physical storage, which provides more
opportunities for optimizations.

#pragma
execution_frequency

Marks program source code that you expect will be either very frequently or very infrequently
executed.

#pragma export Selectively exports functions or variables from a DLL module.

#pragma inline Together with the INLINE compiler option, ensures that frequently used functions are
inlined.

#pragma isolated_call Lists functions that have no side effects (that do not modify global storage). This directive
can improve the runtime performance of variables and storage by allowing the compiler to
make fewer assumptions about whether external and static variables could be updated.

Chapter 4. Improving program performance 163

Table 235. Pragmas that affect performance (continued)

Name Description

#pragma leaves Specifies that a function never returns to the instruction following a call to that function. This
directive provides information to the compiler that enables it to explore additional
opportunities for optimization.

#pragma noinline This directive can improve pipeline usage and allow more of the used routines to be inlined.

#pragma option_override Allows you to specify optimization options on a per-routine basis rather than on only a per-
compilation basis. It enables you to specify which functions you do not want to optimize
while compiling the rest of the program optimized. This directive helps you to isolate which
function is causing problems under optimization.

The option_override pragma can be also used to change the spill size for a function. If
the compiler requests that you to increase the spill size for a specific function, you should
use the option_override pragma, which increases the spill size for all functions in the
compile unit and can have a negative performance impact on the generated code.

Note: The spill size should not be increased unless requested by a compiler message.

#pragma reachable Declares that the point in the program after the specified function can be the target of a
branch from some unknown location. That is, you can reach the instruction after the
specified function from a point in your program other than the return statement in the named
function. This directive provides information to the compiler that enables it to explore
additional opportunities for optimization.

#pragma strings Indicates if strings should be placed in read-only memory or read/write memory. You can
reduce the memory requirements for DLLs by specifying #pragma strings(readonly),
so that string literals are not placed in the writable static area. Alternatively, you can also use
the ROSTRING compiler option (the default), which informs the compiler that string literals
are read-only.

#pragma unroll Informs the compiler how to perform loop unrolling on the loop body that immediately
follows it. The directive works in conjunction with the UNROLL compiler option to provide you
with some control over the application of this optimization techique. The pragma directive
overrides the “UNROLL” on page 181 or NOUNROLL compiler option in effect for the
designated loop.

#pragma variable Indicates if a named external object is used in reentrant or non-reentrant fashion. If an
object is qualified as RENT, its references or its definition will be in the writable static area,
which is in modifiable storage. If an object is qualified as NORENT, its references or its
definition will be in the code area.

You can reduce the memory requirements for DLLs by specifying #pragma
variable(var_name,NORENT), so that constant variables are not placed in the writable
static area.

Alternatively, you can use the ROCONST compiler option to inform the compiler that
constant variables are not to be placed in the writable static area.

164 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

Chapter 5. Using built-in functions to improve
performance

A built-in function is inline code that is generated in place of an actual function call. The compiler will
generate inline code for built-in functions, if the appropriate header files are included in the source code.

If you have included the header files but you want to call either the library version of the function or your
own version, enclose the function name in parentheses when you make the call. For example, if you
wanted to call only memcpy from the header file and use the built-in functions for other memory-related
functions, code the function call as follows:

(memcpy)(buf1, buf2, len)

Note: When NOOPT or COMPACT is specified, the compiler might not expand all built-in functions.

The compiler can also generate inline code for some of the C library functions, if the appropriate header
files are included in the source code. The inline code behaves exactly the same as these C library
functions. For more information, see Using hardware built-in functions in .

The following table lists the C library built-in functions and the header files that they belong to.

Table 236. C-library built-in functions

Built-In Function Header File

abs() stdlib.h

alloca() stdlib.h

ceil()“1” on page 166 math.h

ceilf()“1” on page 166 math.h

ceill()“1” on page 166 math.h

decabs() decimal.h

decchk() decimal.h

decfix() decimal.h

fabs()“1” on page 166 math.h

floor()“1” on page 166 math.h

floorf()“1” on page 166 math.h

floorl()“1” on page 166 math.h

fortrc() stdlib.h

memchr() string.h

memcpy() string.h

memcmp() string.h

memset() string.h

strcat() string.h

strchr() string.h

strcmp() string.h

strcpy() string.h

© Copyright IBM Corp. 2018 165

Table 236. C-library built-in functions (continued)

Built-In Function Header File

strlen() string.h

strncat() string.h

strncmp() string.h

strncpy() string.h

strrchr() string.h

wmemchr()“2” on page 166 wchar.h

wmemcmp()“2” on page 166 wchar.h

wmemcpy()“2” on page 166 wchar.h

wmemset()“2” on page 166 wchar.h

Notes:

1. The compiler only attempts to generate inline code for this built-in function when the OPTIMIZE(2) compiler
option is in effect.

2. The compiler only attempts to generate inline code for this built-in function when the ARCH(7) compiler option
is in effect. LP64 compiles will not generate inline code.

Related information

• For detailed information on how to use vector built-in functions to access and operate vector elements,
see Chapter 3, “Using vector programming support,” on page 27.

__builtin_expect
You can use the __builtin_expect built-in function to indicate that an expression is likely to evaluate
to a specified value. The compiler can use this knowledge to direct optimizations. This built-in function is
portable with the GNU C/C++ __builtin_expect function.

The prototype of this built-in function is as follows:

long __builtin_expect (long exp, long c);

where exp is the integral-type expression to be evaluated and c is the expected value of the expression.

If exp does not actually evaluate at run time to the predicted value c, performance might suffer.
Therefore, you must use this built-in function with caution.

Platform-specific functions
The built-in functions in this section are related to C-library functions that are z/OS specific. The full
description of each function can be found in .

Table 237. Platform-specific built-in functions

Built-In Function Header File

cds() stdlib.h

cs() stdlib.h

Note: cds() and cs() are masking macros. The system header expands them to the __cds and __cs. It is
advisable to use the hardware functions instead of the library functions whenever possible.

166 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

Examples
• You can use the following macros rather than their equivalent functions, if you include the ctype.h

header file.

isalnum() isalpha() isblank() iscntrl() isdigit()

isgraph() islower() isprint() ispunct() isspace()

isupper() isxdigit() tolower() toupper()

• If you are using the __cs1 or __cds1 function with arguments other than the ones declared in the
prototypes in stdlib.h, the compiler might not be able to generate correct code at OPT. In this case,
use the NOANSIALIAS option.

• Typically, arrays are compared element-by-element, using a loop. When you compare two arrays for
equality, replace the loop with the memcmp() library function. This could result in the execution of many
machine instructions being replaced by the execution of a only a few machine instructions.

More efficient comparison with amemcmp() library
function

Less efficient comparison in a loop

if (!memcmp (a, b, sizeof(a)))
 /* arrays are equal */

int a[1000], b[1000];

for (i = 0; i < 1000; ++i)
 if (a[i] != b[i])
 break;

if (i == 1000)
 /* arrays are equal */

• The C language does not allow structure comparison, because structures might contain padding bytes
with undefined values. In cases where you know that no padding bytes exist, use memcmp() to compare
structures. The AGGREGATE compiler option is used to obtain a structure and union map.

• The memset() library function should be used to initialize a character buffer and to initialize an array to
a repetitive byte pattern (such as zeros).

• Use memset() to clear structs, unions, arrays or character buffers as follows:

char c[10];

for (i = 0; i < 10; i++) /* do not use */
 c[i] = ' ';

memset (c, ' ', sizeof (c)); /* better */

• Use the alloca() function to automatically allocate memory from the stack. This function frees
memory at the end of a function call when Enterprise Metal C for z/OS collapses the stack.

• When using strlen(), do not hide size information. Less code is needed for strlen() when the
upper bound is known at compile time.

char small_str_array[100];
char *small_str_ptr;
⋮
x = strlen(small_str_ptr); /* unknown upper bound */

x = strlen(small_str_array); /* better */

• When concatenating strings, use strcat().
• When performing character-to-integer conversions, use atoi() rather than sscanf().

Chapter 5. Using built-in functions to improve performance 167

• Whenever possible, replace strxxx() functions with their corresponding memxxx() functions, because
memxxx() functions are more efficient. You can minimize the execution cost of a strxxx() function by
using fixed-length character buffers to save the length of incoming strings (including null terminators)
for subsequent calls to memcpy() and memcmp().

total_len = strlen (s) + 1;
⋮
for (i = 0; i < 10; i++)
 if (memcmp (s, t[i], total_len) == 0) /* total_len ≤ sizeof(t) */
⋮

memcpy (a, s, total_len);

If you try to replace all strcmp() calls with a memcmp() call taking a strlen() value of one of the
strings, the result might be an attempt to access protected storage which follows the shorter string.
Such an attempt could cause an exception because memcmp() does not stop comparing strings when it
encounters a null in one of the strings.

• Whenever possible, replace wcsxxx() functions with their corresponding wmemxxx() functions,
because wmemxxx() functions are more efficient. You can minimize the execution cost of a wcsxxx()
function by using fixed-length wide character buffers to save the length of incoming wide character
strings (including null terminators) for subsequent calls to wmemcpy() and wmemcmp().

168 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

Chapter 6. Improving performance with compiler
options

This information discusses and lists the Enterprise Metal C for z/OS compiler options that you can use to
improve application performance.

Using the OPTIMIZE option
During optimization, the compiler changes the unoptimized code sequences, derived from the source
code, into equivalent code sequences that execute faster and usually require less memory space. It is
also possible for an expression that would normally cause an exception to be removed by optimization,
thus preventing the exception.

Note: You can optimize code by specifying either OPTIMIZE(2) or OPTIMIZE(3). Optimized code takes
significantly more time to compile than unoptimized code, but will likely result in faster-running code.
There is no guarantee that the compile time at OPTIMIZE(3) will remain similar from release to release.

Because the optimization is achieved by transforming the code using knowledge obtained from a larger
program context, the direct correspondence between source and object code is often lost. Optimized
code is also more sensitive to subtle coding errors.

One example of a subtle coding error is to type cast a pointer variable incorrectly. The compiler assumes
ISO conformance when doing optimization. If your program does not conform, you may receive undefined
results. For more information, see “ANSI aliasing rules” on page 155 and “Using ANSI aliasing rules” on
page 157.

Optimizations performed by the compiler
The compiler performs several optimizations, including:
Inlining

Inlining replaces certain function calls with the actual code of the function being performed. For more
information on inlining, see “Inlining” on page 173.

For Enterprise Metal C for z/OS, automatic inlining is performed by default when you specify
OPTIMIZE. You can override this inlining by using the NOINLINE option. For more information, see
INLINE | NOINLINE in .

Value numbering
Value numbering involves local constant propagation, local expression elimination, and folding several
instructions into a single instruction.

Straightening
Straightening is rearranging the program code to minimize branching logic and to combine physically
separate blocks of code.

Common expression elimination
Common expressions recalculate the same value in a subsequent expression. The duplicate
expression can be eliminated by using the previous value. This is done even for intermediate
expressions within expressions.

If your program contains the following statements, the common expression c + d is saved from its
first evaluation and is used in the subsequent statement to determine the value of f.

 a = c + d;
 .
 .
 .
 f = c + d + e;

© Copyright IBM Corp. 2018 169

Code motion
If variables used in a computation within a loop are not altered within the loop, it may be possible to
perform the calculation outside of the loop and use the results within the loop.

Strength reduction
Less efficient instructions are replaced with more efficient ones. For example, in array addressing, an
add instruction replaces a multiply.

Constant propagation
Constants used in an expression are combined and new ones generated. Some mode conversions are
done, and compile-time evaluation of some intrinsic functions takes place.

Instruction scheduling
Instructions are reordered to minimize execution time.

Dead store elimination
The compiler eliminates stores when the value stored is never referred to again. For example, if two
stores to the same location have no intervening load, the first store is unnecessary, and is therefore
removed.

Dead code elimination
The compiler may eliminate code for calculations that are not required. Other optimization techniques
may cause code to become dead.

Graph coloring register allocation
The compiler uses a global register allocation for the whole function, thereby allowing variables to be
kept in registers rather than in memory.

These optimization techniques may be performed both locally and globally. Increases in storage and
compile time requirements over NOOPT will occur. Higher levels of optimization may perform the same
options more rigourously as well as adding additional options.

Aggressive optimizations with OPTIMIZE(3)
The compiler optimizes more aggressively with OPTIMIZE(3) than with OPTIMIZE(2). Code may be
moved, and computations may be scheduled, even if this could potentially raise an exception.

OPTIMIZE(3) may place instructions onto execution paths where they will be executed when they may
not have been according to the actual semantics of the program. For example, a loop-invariant floating-
point computation that is found on some, but not all, paths through a loop will not be moved using
OPTIMIZE(2) because the computation may cause an exception. For OPTIMIZE(3), the compiler will move
the computation because it is not certain to cause an exception.

The same is true for moving loads. Although a load through a pointer is never moved, loads off the static
or stack base register are considered movable using OPTIMIZE(3). Loads in general are not considered to
be absolutely safe using OPTIMIZE(2) because a program can contain a declaration of a static array a of
10 elements and load a[60000000003], which could cause a segmentation violation.

The same concepts apply to scheduling. In the following example, using OPTIMIZE(2), the computation of
b+c is not moved out of the loop for two reasons:

• It is considered dangerous because it is a floating-point operation
• It does not occur on every path through the loop

⋮
int i;
float a[100], b, c;
for (i=0; i < 100; i++)
{
 if (a[i] < a[i+11])
 a[i] = b + c;
}
⋮

At OPTIMIZE(3), the computation b + c is moved out of the loop.

Some general differences with OPTIMIZE(2) are as follows:

170 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

• Increased optimization scope, typically to encompass a whole procedure
• Specialized optimizations that might not help all programs
• Optimizations that require large amounts of compile time or space
• Elimination of implicit memory usage
• Activation of NOSTRICT, which allows some reordering of floating-point computations and potential

exceptions

Because OPTIMIZE(3) implies the NOSTRICT option, certain floating-point semantics of your application
can be altered to gain execution speed. These typically involve precision trade-offs such as the following
operations:

• Reordering of floating-point computations
• Reordering or elimination of possible exceptions (for example, division by zero or overflow)
• Combining multiple floating-point operations into single machine instructions; for example, replacing an

add then multiply with a single more accurate and faster float-multiply-and-add instruction

You can still gain most of the benefits of OPTIMIZE(3) while preserving precise floating-point semantics
by specifying STRICT. This is only necessary if a particular level of floating-point computational accuracy,
as compared with NOOPT or OPTIMIZE(2) results, is important. You can also specify STRICT if your
application is sensitive to floating-point exceptions, or if the order and manner in which floating-point
arithmetic is evaluated is important. Largely, without STRICT, the difference in computed values on any
one source-level operation is very small compared to lower optimization levels. However, the difference
can compound if the operation involved is in a loop structure, and the difference becomes additive.

Optimization option levels
You can use the metalc utility options to specify five base optimization levels, which map to the z/OS
batch options as follows:

• -O0 or NOOPT, almost no optimization, best for getting the most debugging information
• -O2 or OPTIMIZE(2), strong low-level optimization that benefits most programs
• -O3 or OPTIMIZE(3), intense low-level optimization analysis
• -O4 or OPTIMIZE(3), HOT, IPA(LEVEL(1)), all of -O3 plus detailed loop analysis and basic whole-

program analysis at link time
• -O5 or OPTIMIZE(3), HOT, IPA(LEVEL(2)), all of -O4 and detailed whole-program analysis at link time

Note: -O1 level is not supported.

Optimization progression
Table 238 on page 171 details options you should use with each level and some useful additional options.

Table 238. Optimization levels and options

The metalc utility optimization
option level

Additional batch options
implied by optimization level

Additional recommended batch
options

-O0 None ARCH(n)

-O2 None ARCH (n)
INLINE (to tune inlining)
TUNE(n)

-O3 NOSTRICT ARCH(n)
TUNE(n)

Chapter 6. Improving performance with compiler options 171

Table 238. Optimization levels and options (continued)

The metalc utility optimization
option level

Additional batch options
implied by optimization level

Additional recommended batch
options

-O4 All of OPTIMIZE(3) plus:
HOT
IPA(LEVEL(1))

ARCH(n)
TUNE(n)
PDF

-O5 All of OPTIMIZE(3) plus:
HOT
IPA(LEVEL(2))

ARCH(n)
TUNE(n)
PDF

While Table 238 on page 171 provides a list of the most common compiler options for optimization, the
compiler offers optimization facilities for almost any application. For more information, see “Additional
options that affect performance” on page 180.

Processor optimization capabilities with ARCH and TUNE options

ARCHITECTURE option

The ARCHITECTURE option specifies the architectural level for which the executable program's
instructions will be generated.

The ARCHITECTURE option instructs the compiler to structure your application to execute on a particular
set of machines that support the specified instruction set and later. The choice of processor gives you the
flexibility of compiling your application to execute optimally on a particular machine or on any higher-level
architecture machines but still have as much architecture-specific optimization applied as possible.

Using the correct ARCHITECTURE option is the most important step in influencing chip-level optimization.
The compiler uses the ARCHITECTURE option to make both high and low-level optimization decisions and
trade-offs. The ARCHITECTURE option allows the compiler to access the full range of processor hardware
instructions and capabilities when making code generation decisions. Even at low optimization levels,
specifying the correct target architecture can have a positive impact on performance.

For example, to compile applications with the Enterprise Metal C for z/OS compiler to produce code that
uses instructions available on the z13® models, use ARCHITECTURE(11).

TUNE option

The TUNE option specifies for which architectural level the executable program will be optimized. The
TUNE option allows the compiler to take advantage of differences (such as scheduling of instructions) in
architectural levels.

Use the TUNE option to direct the optimizer to bias optimization decisions for executing the application on
a particular architecture but not preventing the application from running on other architectures. The
default TUNE setting depends on the setting of the ARCHITECTURE option. If the ARCHITECTURE option
selects a particular machine architecture, the range of TUNE suboptions that are supported is limited by
the chosen architecture and all architectures above that level. Using TUNE allows the optimizer to
perform transformations, such as instruction scheduling, so that resulting code executes most efficiently
on your chosen TUNE architecture.

Use TUNE to specify the most common or important processor where your application executes. For
example, if your application usually executes on zEC12 models but sometimes executes on z13 models,
use TUNE(10). The code generated executes more efficiently on zEC12 models but can run correctly on
z13 models.

172 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

Inlining
Inlining replaces certain function calls with the actual code of the function and is performed before all
other optimizations. Not only does inlining eliminate the linkage overhead, it also exposes the entire
called function to the caller, which enables the compiler to better optimize your code.

Note: See “Inlining under IPA” on page 174 for information on differences in inlining under IPA.

The following types of calls are not inlined:

• A call where the number of parameters on the call does not match that on the function definition. An
example of this is a variable argument function call.

• A call that is directly recursive; the routine calls itself.
• K&R style var_arg functions.

Selectively marking code to inline
The Enterprise Metal C for z/OS inliner supports two modes of running: selective and automatic.

Selective mode enables you to specify, in your source code, the functions that you do, and do not, want
inlined.

If you know which functions are frequently invoked from within a compilation unit, you can mark them for
inlining,

• Add the appropriate #pragma inline directives in your source and compile with INLINE.
• You can also use the always_inline function attribute to inline a function, regardless of whether

optimization was specified at compile time.

If your code contains complex macros, the macros can be made into static routines that are marked to be
inlined at no execution-time cost. All static routines that are interfaces to a data object can be placed in a
header file.

Automatically choosing functions to inline
Automatic mode assists you with starting to optimize your code. It allows the compiler to choose
potential functions to inline. The compiler will inline all routines that are less than the threshold in
abstract code units (ACUs) until the function that the functions are inlined into is greater than limit
abstract code units. The threshold and limit parameters are defined as follows:

threshold
Maximum relative size of a function to inline. The default value is 100 Abstract Code Units (ACUs).
ACUs are proportional in size to the executable code in the function; your code is translated into ACUs
by the compiler. Specifying a threshold of 0 is equivalent to specifying NOAUTO. Note that the
proportion of ACUs to executable code in a function is different under IPA.

limit
Maximum relative size a function can grow before auto-inlining stops. The default is 1000 ACUs for
the specific function. Specifying a limit of 0 is equivalent to specifying NOAUTO.

Note: When functions become too large, runtime performance can degrade.

Note: Inlining debugging functions or functions that are rarely invoked can degrade performance. Use the
#pragma noinline directive to instruct the automatic inliner to not inline these types of functions. The
#pragma inline and the #pragma noinline directives and the inline keyword are honored by
automatic inlining regardless of the limit and threshold you have specified. For more information, see
#pragma inline / noinline in .

Modifying automatic inlining choices
While automatic inlining is the best choice the compiler can make for you, you can further improve your
performance. Use #pragma inline and #pragma noinline to reduce the need to modify your inlining

Chapter 6. Improving performance with compiler options 173

choices when you change your application. You may want to wait until you have a stable application
before you do the following steps.

1. Add #pragma noinline to your source to insure that functions, such as routines for debugging or
handling exceptions, do not get inlined.

2. Add #pragma inline directive to any frequently used routines to ensure that it gets inlined.
3. You should also vary the limit and threshold values.

• The inline report tells you the abstract code units (ACUs) for each function. These should help you
determine an appropriate threshold to start from. In general, your initial threshold should be as small
as possible, and your initial limit should be in the 1000 to 2000 range.

• Increase the threshold by an increment small enough to catch a few more routines each time.
• Change the limit when you wish. Because performance will improve as a function of both the limit

and the threshold values, it is not recommended that you change both limit and threshold at
the same time.

4. Repeat the process until you feel that you have found the best performance parameters. You should
run your application to determine if the tuning has found the best performance parameters.

5. When you are satisfied with the selection of inlined routines, add the appropriate #pragma inline
directives or inline keywords to the source. That is, when the selected routines are forced with these
directives, you can then compile the program in selective mode. This way, you do not need to be
affected by changes made to the heuristics used in the automatic inliner.

Overriding inlining defaults
Automatic and selective inlining are performed when the OPTIMIZE compiler option is specified. You can
override this by specifying the NOINLINE option when you specify your optimization level. You can also
override this by specifying the #pragma noinline directive for a particular function. For more
information, see #pragma inline / noinline in .

Inlining under IPA
The IPA Inliner functions differently from the regular inliner:

• It performs inlining across compilation units, rather than within a compilation unit.
• It handles inlining of functions with variable argument lists.
• It inlines calls from recursive cycles (for example, where function A calls function B calls function C calls

function A). However, it avoids making the functions too large.

For more information about IPA, see “Using the IPA option” on page 175.

Using the HOT option
The HOT option enables the compiler to request high-order transformations on loops during optimization,
which gives you the ability to generate more highly optimized code.

Loops typically account for the majority of the execution time of most applications and the HOT optimizer
performs in-depth analysis of loops to minimize their execution time. Loop optimization techniques
include: interchange, fusion, unrolling of loop nests, and reducing the use of temporary arrays. There are
three goals in these optimizations:

• Reducing the costs of memory access through the effective use of caches and translation look-aside
buffers (TLBs). Increasing memory locality reduces cache/TLB misses.

• Overlapping computation and memory access through effective utilization of the data prefetching
capabilities provided by the hardware.

• Improving the utilization of processor resources through reordering and balancing the usage of
instructions with complementary resource requirements. Loop computation balance typically involves
load/store operations balanced against floating-point computations.

174 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

Using the IPA option
Interprocedural Analysis (IPA), through the IPA option, can also improve the execution time of your
application. IPA is a mechanism for performing optimizations across compilation unit boundaries. It also
performs optimizations not otherwise available with the Enterprise Metal C for z/OS compiler, such as:

• Inlining across compilation units
• Program partitioning
• Coalescing of global variables
• Code straightening
• Unreachable code elimination
• Call graph pruning of unreachable functions

This information provides an overview of the Interprocedural Analysis (IPA) processing that is available
through the IPA compiler option. For more information, see:

• For the effects of IPA on compiling, compiler options, and compiler listings: IPA considerations in
• For the effects of IPA on pragmas: IPA effects in

Types of procedural analysis
The Enterprise Metal C for z/OS compiler performs both intraprocedural and interprocedural analysis.

Intraprocedural analysis is a mechanism for performing optimization for each function in a compilation
unit, using only the information available for that function and compilation unit.

Interprocedural analysis is a mechanism for performing optimization across function and compilation unit
boundaries. When inlining is in effect, the compiler performs a limited form of interprocedural analysis,
where it only applies within a compilation unit.

Interprocedural analysis through the IPA compiler option improves upon the limited interprocedural
analysis described above. When you invoke interprocedural analysis through the IPA option, the compiler
performs optimizations across the entire program. It also performs optimizations not otherwise available
with the compiler. The types of optimizations performed include:
Inlining across compilation units

Inlining replaces certain function calls with the actual code of the function. Inlining not only
eliminates the linkage overhead but also exposes the entire function to the caller and thus enables
the compiler to better optimize your code.

Program partitioning
Program partitioning improves performance by reordering functions to exploit locality of reference.
Functions that call each other frequently will be closer together in memory.

Coalescing of global variables
The compiler puts global variables into one or more structures and accesses the variables by
calculating the offsets from the beginning of the structures. This lowers the cost of variable access
and exploits data locality.

Code straightening
Code straightening streamlines the flow of your program.

Unreachable code elimination
Unreachable code elimination removes unreachable code within a function.

Call graph pruning of unreachable functions
Call graph pruning of unreachable functions removes code that is 100% inlined or never referenced.

Intraprocedural constant and set propagation
IPA propagates floating point and integer constants to their uses and computes constant expressions
at compile time. Also, variable uses that are known to be one of several constants can result in the
folding of conditionals and switches.

Chapter 6. Improving performance with compiler options 175

Intraprocedural pointer alias analysis
IPA tracks pointer definitions to their uses, resulting in more refined information about memory
locations that a pointer dereference may use or define. This enables other parts of the compiler to
better optimize code around such dereferences. IPA tracks data and function pointer definitions.
When a pointer dereference can only refer to a single memory location or function, the dereference is
rewritten to be an explicit reference to the memory location or function.

Intraprocedural copy propagation
IPA propagates expressions defining some variables to the uses of the variable. This creates
additional opportunities for constant expression folding. It also eliminates redundant variable copies.

Intraprocedural unreachable code and store elimination
IPA removes definitions of variables that cannot be reached, along with the computation feeding the
definition.

Conversion of reference (address) arguments to value arguments
IPA converts reference (address) arguments to value arguments when the formal parameter is not
written in the called procedure.

Conversion of static variables to automatic (stack) variables
IPA converts static variables to automatic (stack) variables when their use is limited to a single
procedure invocation.

The execution time for code optimized using interprocedural analysis (IPA compile and link) is normally
faster than for code optimized using intraprocedural analysis (IPA compile only) or the OPT compiler
option. Please note that not all applications are suited for IPA optimization and the performance gains
realized from using IPA will vary.

Note: For additional information about using the IPA(LINK) option, see “IPA(LINK) option and exploitation
of 64-bit virtual memory” on page 8.

Compiler processing flow
IPA changes the flow of compiler processing. The following sections explain the differences.

Regular compiler execution

If you specify the NOIPA compiler option (the default), the compiler processes source files, as shown in
Figure 24 on page 176. The output is the HLASM source code for each source file processed.

Figure 24. Flow of regular compiler processing

Compiler execution with IPA

IPA processing consists of two steps: IPA compile and IPA link. You run the IPA compile step once for
each compilation unit, and run the IPA link step once for the program as a whole. The final output is a

176 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

single IPA-optimized object module which you must bind with the binder to produce an executable load
module.

Note: If you want to get the maximum benefit from IPA, run both the IPA compile and IPA link steps.

You can invoke the IPA compile step in the same environments that you use for a regular compilation.

IPA compile step processing

You invoke the IPA compile step by specifying the IPA(NOLINK) compiler option, as shown in Figure 25 on
page 177. (NOLINK is the default suboption). During the IPA compile step, the compiler creates optimized
objects. These objects contain information that the IPA link step can use for further optimization.

Figure 25. IPA compile step processing

The following processing takes place for each compilation unit that you specify for the IPA compile step:

1. The compiler determines the final suboptions for the IPA option, based upon the compiler options and
IPA suboptions that you specified. This is necessary because the compiler does not support some
combinations of compiler options and IPA suboptions. The compiler issues a warning message if it
finds unsupported combinations.

2. The compiler promotes some IPA suboptions based upon the presence of related compiler options
and issues informational messages if it does so. For more information, see IPA considerations in .

3. The compiler generates an IPA object file. This object file contains control information for a
compilation unit required for the IPA link step.

Each IPA object contains a CSECT that includes the ESD name @@IPAOBJ.

Chapter 6. Improving performance with compiler options 177

IPA link step processing

You invoke the IPA link step by specifying the IPA(LINK) compiler option, as shown in Figure 26 on page
178. During this step, the compiler links the IPA objects that were produced by the IPA compile step
(along with non-IPA object files and load modules, if specified), does partitioning, performs optimizations,
and generates the final object code.

Figure 26. IPA link step processing

The following processing takes place:

1. The compiler determines the final suboptions for the IPA option, based upon the compiler options and
IPA suboptions you specify. This is necessary because some combinations of compiler options and IPA
suboptions are unsupported. The compiler issues informational and warning messages for
unsupported combinations.

2. The compiler links IPA object files, as well as non-IPA object files and load modules (if specified). The
compiler also merges information from the IPA compile step.

Input for the link step comes from one of three sources:

• The primary input file (specified by the SYSIN ddname). This can be either:

– A set of IPA link control statements that you create

178 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

These may be INCLUDE and LIBRARY IPA link control statements that explicitly identify
secondary input files. IPA uses the same control statement format (with some exceptions) used
by the binder.

– The IPA object file from the compilation unit that contains the main function or fetchable entry
point. If you specify this file, the compiler searches for all other IPA files using the SYSLIB
ddname.

• One or more secondary input files

The secondary input file may contain:

– IPA object files or PDS libraries
– Conventional object files or PDS libraries
– Load module libraries
– z/OS UNIX archive libraries
– IPA link control statements

These secondary input files are to be used for autocall searches. You can specify these files through
the SYSLIB ddname or explicitly include them through INCLUDE or LIBRARY IPA link control
statements on the IPA link step.

The IPA link step resolves external references using explicit and autocall resolution. This allows IPA
to identify the static and global data and the external references for the whole program.

Ensure that you do not accidentally specify FB, LRECL 80 source files as input to the IPA link step.
The IPA link step will assume that records from these files contain valid object information, and will
retain them in the object file. When the linkage editor processes the object file, it will determine the
records to be invalid, and will issue diagnostic messages.

• The IPA link step control file. This file contains additional IPA control directives. The CONTROL
suboption of the IPA compiler option identifies this file. For more information, see IPA Link step
control file in .

3. As objects are processed, IPA link step builds the program call graph, merging the IPA object code
according to its place in the call graph. If necessary, IPA link step stores non-IPA object code for
inclusion in the final object file, and converts load module library members into object format for
inclusion in the final object file.

4. The compiler performs optimizations across the call graph. You specify the type and extent of
optimizations using the LEVEL suboption of the IPA compiler option.

5. IPA link step divides the program call graph into separate units called partitions. Partitioning of the call
graph is controlled by:

• The partition size limit that is specified in the IPA control file.
• The connectivity of your program. IPA places code that is isolated from the rest of the program into a

separate partition.
• Resolution of conflicting effects between the compiler options and pragmas specified for

compilation units processed during the IPA Compile step. These are the compiler options and
pragmas that generate information during the analysis phase of the compiler for input to the code-
generation phase.

IPA link step produces a final single object module for the program from these partitions.

You must bind the IPA single object module to produce the executable module. You need to add the
assembly step to produce the object file from the IPA link generated HLASM source file. You also need to
supply the object file produced by the assembler along with all other library data sets to the binder for
producing the final executable program.

Notes:

• An object file produced by an IPA compile that contains IPA object or combined IPA and conventional
object information can be used as input to the IPA link of the same or later Version/Release.

Chapter 6. Improving performance with compiler options 179

• An object file produced by an IPA compile that contains IPA object or combined IPA and conventional
object information cannot be used as input by the IPA link of an earlier Version/Release. If this is
attempted, the IPA link will issue an error diagnostic message.

• If the IPA object is recompiled by a later IPA compile, additional optimizations may be performed and
the resulting application program may perform better.

Additional options that affect performance
The following topics describe compiler options that affect performance. For more information, see
Compiler options in .

AGGRCOPY
The AGGRCOPY option specifies whether aggregate assignments might have overlapping source and
target locations. AGGRCOPY(NOOVERL), which is the default, asserts to the compiler that the source and
destination for structure and union assignments do not overlap. This assumption enables destructive
copy operations for structures and unions, which can improve performance.

ANSIALIAS
The ANSIALIAS option specifies whether type-based aliasing is to be used during optimization. Type-
based aliasing will improve optimization. For more information about ANSI aliasing, see “ANSI aliasing
rules” on page 155 and “Using ANSI aliasing rules” on page 157.

ASSERT(RESTRICT)
The ASSERT(RESTRICT) option enables optimizations for restrict qualified pointers.

COMPACT
When the COMPACT option is in effect, the compiler favors optimizations that tend to limit the growth of
the code. Depending on your specific program, the object size may increase or decrease and the
execution time may increase or decrease. Any time you change your program, or change the release of
the compiler, you should re-evaluate your use of the COMPACT option.

COMPRESS
Use the COMPRESS option to suppress the generation of function names in the function control block to
reduce the size of your application's load module. The amount of reduction depends on the average
function size in the application, as compared to the length of the function name.

FLOAT
Some of the FLOAT suboption provide precise control over the handling of floating-point calculations with
binary floating-point numbers. Some of the most frequently used suboptions that affect performance
when used with FLOAT(IEEE) are listed as follows:
FOLD

Enables compile time evaluation of floating-point calculations. You should disable folding only if your
application must handle certain floating-point exceptions such as overflow or inexact. FLOAT(FOLD) is
the default.

MAF
Makes floating-point calculations faster and more accurate by using floating-point multiply-add
instructions where appropriate. However, the results might not be equivalent to those from similar
calculations performed at compile time or on other types of computers.

NORRM
Allows the compiler to assume that the rounding mode is always round-to-nearest. FLOAT(NORRM) is
the default.

180 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

HGPR
The HGPR option enables the compiler to exploit 64-bit General Purpose Registers (GPRs) in 32-bit
programs targeting z/Architecture hardware.

LIBANSI
The LIBANSI option specifies whether or not all functions with the name of an ANSI C library function are
in fact the ANSI functions. This allows the compiler to generate code based on existing knowledge
concerning the behavior of the function. For example, the compiler will determine whether any side
effects are associated with a particular library function.

PREFETCH
The PREFETCH option inserts prefetch instructions automatically where there are opportunities to
improve code performance.

RESTRICT
The RESTRICT option indicates to the compiler that all pointer parameters in some or all functions are
disjoint.

ROCONST
The ROCONST option specifies that the const qualifier is respected by the program. Variables that are
defined with the const keyword are not overridden by a casting operation.

ROSTRING
The ROSTRING option specifies that strings are placed in read-only memory. It has the same effect as the
#pragma strings(readonly) directive.

STRICT
The STRICT option prevents optimizations done by default at optimization levels OPT(3), and optionally at
OPT(2), from re-ordering instructions that could introduce rounding errors.

STRICT_INDUCTION
With strict induction, induction (loop counter) variables are not optimized. This guards against problems
that can occur if an optimized induction variable overflows.

If it is certain that the induction variables will not overflow, use the NOSTRICT_INDUCTION option. This
option can improve the performance of induction variables that are smaller than the register size on the
processor.

UNROLL
The UNROLL option gives the user the ability to control the amount of loop unrolling done by the compiler.
Loop unrolling exposes instruction level parallelism for instruction scheduling and software pipelining and
thus can improve a program's performance. It should be used in conjunction with #pragma unroll.

VECTOR
The VECTOR option controls whether the compiler enables the vector programming support and
automatically takes advantage of vector/SIMD instructions. The VECTOR option provides potential
performance improvements in the following cases:
Binary floating-point data types: float and long double

When the VECTOR option is specified with ARCH(12) and FLOAT(IEEE), the long double and float
data types can be processed in the vector registers.

Chapter 6. Improving performance with compiler options 181

Binary floating-point data type: double
When the VECTOR option is specified with ARCH(11) or higher and FLOAT(IEEE), the double data
types can be processed in the vector registers.

Built-in library functions
When the VECTOR option is specified with ARCH(11) or higher, certain built-in library functions can
take advantage of vector string instructions to accelerate the processing of strings of character data.

SIMD instructions
When the AUTOSIMD suboption is in effect, the compiler generates code, when possible, using the
SIMD instructions. SIMD instructions calculate several results at one time, which is faster than
calculating each result sequentially.

Related information

• VECTOR | NOVECTOR in .

182 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

Chapter 7. Balancing compilation time and
application performance

Compilation time increases as the level of optimization increases. An end user requires that an
application run as fast as possible, and therefore will compile with the maximum optimization possible.
Conversely, a developer rebuilds an application many times while debugging a problem, and therefore will
compile with the minimum optimization possible. In addition, a developer might need to implement
debugging tools, or activate extra debugging code, both of which would affect the performance of the
application. This information discusses how to determine the proper balance between compilation time
and application performance.

General tips
The following list contains suggestions to support your efforts to debug programs, and reduce compilation
time, and improve application performance.

• All builds for testing or production should be compiled with the optimization level at which you intend to
ship the final product.

• Even if you compile with OPT(0) and debug on a regular basis, you should also do some testing at higher
optimization levels to ensure that no aliasing rules or ANSI rules have been broken, which would cause
the code to be optimized incorrectly.

• You can ensure the cleanest possible optimized compilations, as well as reduce the number of bugs
that occur only at high optimization levels, by reviewing every warning issued by the compiler.

Note: Warnings are often a sign that the compiler is not sure how to interpret the code. If the compiler
is not sure how to interpret code at OPT(0), the code could cause an error at higher optimization levels
or contribute to longer compilation times.

• The simpler the code is, the more easily the compiler can understand it and the faster it will compile.
For more information, see Chapter 4, “Improving program performance,” on page 155.

• Generate production builds each week throughout the project cycle. This makes it easier to determine
when problems entered the code base. Waiting until the end of a cycle to generate a build with high
optimization can make it more difficult to find errors caused by coding that does not confirm to ANSI
aliasing rules.

• Set up a build so that you can customize options for any source file, if necessary. For example, use a
makefile for a UNIX System Services-based build with a default rule for compilation. You can then
customize targets for source files that require different options. Similarly, use the OPTFILE compiler
option for a JCL-based build. A build script can then use a project-level option file for all source files in a
module. You can specify either of the following:

– Both a project-level option file and additional specific options for a source file
– A source-specific option file in the option list that follows the options file name

• Set up build scripts so that they can be used for both development and production builds to:

– Eliminate a common source of errors (because it is necessary to update only one build environment)
– Make it easier to reproduce and debug problems that occur only in the development build
– Minimize occurrences of bugs that are reproducible only in the development build

Programmer tips
• You can add code to the beginning and end of a header file to ensure that it is not processed

unnecessarily during compilation.

© Copyright IBM Corp. 2018 183

The following example contains code that is included in a header file called myheader.

#ifndef __myheader
 #ifdef __COMPILER_VER__
 #pragma filetag ("IBM-1047")
 #endif
 #define __myheader 1
 /* header file contents */
#endif

You must ensure that the filetag statement, if used, appears before the first statement or directive
(except for any conditional compilation directives). The ifndef statement is the first non-comment
statement in the header file (the actual token used after the ifndef statement is your choice). The
define statement must follow; it cannot appear before the filetag statement, but it must appear
before any other preprocessor statement (other than comments).

Note that the header can contain comment statements in any location. Using this format of header-file
blocking will improve compilation time for programs where a header file is included more than once.

• Use the system header files from UNIX file system instead of partitioned data sets to improve
compilation time. Specify the following compiler options to do this:

NOSEARCH SEARCH('/usr/include/metal/')

• With the MEMORY compiler option (the default), the compiler uses a hiperspace or memory file in place
of a work file (if possible). This option increases compilation speed, but you might require additional
memory to use it. If the compilation fails because of a storage error, either increase your storage size or
recompile your program using the NOMEMORY option.

• If you want to improve your OPT compilation time at the expense of runtime performance, you can
specify:
MAXMEM

Limits the amount of memory used for local tables of specific memory intensive optimizations. If
this amount of memory is insufficient for a particular optimization, the compiler performs somewhat
poorer optimization and issues a warning message. Reducing the MAXMEM value from 2G to 10M
may disable some optimizations, which may cause some decrease in execution performance.

NOINLINE
Disables inlining, which might decrease the compilation time. There might also be a corresponding
increase in execution time.

System programmer tips
• If you do a lot of application development on your machine, put the compiler and runtime library in the

LPA. Similarly, if you are working in z/OS UNIX System Services also put the metalc utility in the
dynamic LPA, LPA, or linklist.

• Use packs that are cached with DASD fast write.

If you are working in z/OS UNIX System Services, give each user a separate mountable file system to
avoid I/O contention.

If the compiler is not in LPA, tune your jobs to avoid channel and pack contention when the headers and
the compiler are on the same pack and multiple compile jobs are executing.

• You can define /tmp as a RAM disk by specifying:

FILESYSTYPE TYPE(TFS) ENTRYPOINT(BPXTFS)

This is described in more detail in .

184 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

Appendix A. Packaging considerations

When you develop a program, library, or application that will be shipped as a product, you should use
SMP/E to manage the installation. This information provides hints and tips for packaging a C application.
It assumes that you are familiar with SMP/E concepts and terminology. For more information about SMP/E
and packaging rules, refer to the following manuals:

•
•
• Standard packaging rules for MVS-based products

The way you package your product may have a significant impact on its relationship with other products,
its dependency on libraries, and the way it is eventually serviced. For this reason, you should make a
packaging plan as part of the design process for your product.

For more information about these compiler options, see .

Compiler options
The CSECT option is useful when you compile a program that will be packaged as a product. You can use
the CSECT compiler option or #pragma csect to assign names to CSECTs. This provides you with more
control and flexibility when you service the product.

For more information about these compiler options, see .

Libraries
Your product can use various type of libraries:

Your own libraries
If your program uses your own libraries, you can statically bind the libraries with the program and
consider them an integral part of the product.

Third-party libraries
If your application uses third-part vendor libraries, you should consider whether the linking is static or
dynamic (if it is a DLL), and whether the libaries are upward-compatible. If you statically link a library
with your application, you can use either the ++MOD method or the ++PROGRAM method, as
described in “Linking” on page 185.

Linking
There are two ways to ship an application that is statically linked to a library:

• You can use the ++MOD command to build the application, and not perform the final link to the library
until the product is installed. If the customer later installs a PTF for this library, your application will
automatically be relinked.

• You can build the application and link it to the library, and then install it using the ++PROGRAM
command. If a PTF is issued for the library, this will have no effect until you include the updated library
in a PTF for your product.

++MOD method
If you want to do the final link-edit step during installation, use the ++MOD command statement in the
MCS. You must compile and then partially link your program with any libraries that will not exist on the

© Copyright IBM Corp. 2018 185

customer's system, and then produce output in link-edited format. Any references to libraries that will
exist on the customer's system are unresolved. Ship this link-edited module on the SMP/E tape.

At installation time, the application is linked to the libraries on the customer's system.

SMP/E supports the automatic library call facility through the use of SYSLIB DD statements. This allows
you to implicitly include modules without explicitly specifying them in the JCLIN. This can provide
flexibility if the link-edit structure of the application must change during servicing, for example because
new functions are used.

When you service a ++MOD, you must ship your fixes using a ++PTF command statement. The SMP/E tape
must contain the text deck (object files) in fixed-block 80 format. SMP/E invokes the link-editor to rebind
the new text deck with the existing load module. You must name all of the CSECTs, using the CSECT
compiler option or #pragma csect. (If you do not name the CSECTs, CSECT replacement would not
happen. Old text records would accumulate in the load module as you ship out subsequent fixes for your
product.)

To allow rebind, you must also use the EDIT=YES option in the bind step. This is the default.

++PROGRAM method
You can choose to do the final link step as part of your product build, and ship the output load module to
your customer. The advantage is that the whole build process is under your control, and you can perform
the final testing of the load module in your own controlled environment.

If service is applied to any linked library, this will have no effect on your product until you include the
service in a PTF.

The ++PTF command, which is used for shipping and applying fixes, expects input in fixed-block 80
format. The output of the link step is not in this format. You can convert it as follows:

1. UNLOAD - use IEBCOPY to copy the module and its alias (if any) to a sequential file.
2. Run the SMP/E utility GIMDTS to convert the sequential file to a fixed-block 80 file.

Conceptually, the ++PROGRAM copies the whole load module to your customer's target dataset with no
additional processing. You customer receives the module exactly as you ship it.

186 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

Appendix B. Accessibility

Accessible publications for this product are offered through IBM Knowledge Center (www.ibm.com/
support/knowledgecenter/SSLTBW/welcome).

If you experience difficulty with the accessibility of any z/OS information, send a detailed message to the
Contact z/OS web page (www.ibm.com/systems/z/os/zos/webqs.html) or use the following mailing
address.

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
United States

Accessibility features

Accessibility features help users who have physical disabilities such as restricted mobility or limited
vision use software products successfully. The accessibility features in z/OS can help users do the
following tasks:

• Run assistive technology such as screen readers and screen magnifier software.
• Operate specific or equivalent features by using the keyboard.
• Customize display attributes such as color, contrast, and font size.

Consult assistive technologies
Assistive technology products such as screen readers function with the user interfaces found in z/OS.
Consult the product information for the specific assistive technology product that is used to access z/OS
interfaces.

Keyboard navigation of the user interface
You can access z/OS user interfaces with TSO/E or ISPF. The following information describes how to use
TSO/E and ISPF, including the use of keyboard shortcuts and function keys (PF keys). Each guide includes
the default settings for the PF keys.

•
•
•

Dotted decimal syntax diagrams
Syntax diagrams are provided in dotted decimal format for users who access IBM Knowledge Center with
a screen reader. In dotted decimal format, each syntax element is written on a separate line. If two or
more syntax elements are always present together (or always absent together), they can appear on the
same line because they are considered a single compound syntax element.

© Copyright IBM Corp. 2018 187

http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome
http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome
http://www.ibm.com/systems/z/os/zos/webqs.html

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To hear these numbers
correctly, make sure that the screen reader is set to read out punctuation. All the syntax elements that
have the same dotted decimal number (for example, all the syntax elements that have the number 3.1)
are mutually exclusive alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, your syntax
can include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a syntax element with
dotted decimal number 3 is followed by a series of syntax elements with dotted decimal number 3.1, all
the syntax elements numbered 3.1 are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to add information about the
syntax elements. Occasionally, these words and symbols might occur at the beginning of the element
itself. For ease of identification, if the word or symbol is a part of the syntax element, it is preceded by the
backslash (\) character. The * symbol is placed next to a dotted decimal number to indicate that the
syntax element repeats. For example, syntax element *FILE with dotted decimal number 3 is given the
format 3 * FILE. Format 3* FILE indicates that syntax element FILE repeats. Format 3* * FILE
indicates that syntax element * FILE repeats.

Characters such as commas, which are used to separate a string of syntax elements, are shown in the
syntax just before the items they separate. These characters can appear on the same line as each item, or
on a separate line with the same dotted decimal number as the relevant items. The line can also show
another symbol to provide information about the syntax elements. For example, the lines 5.1*, 5.1
LASTRUN, and 5.1 DELETE mean that if you use more than one of the LASTRUN and DELETE syntax
elements, the elements must be separated by a comma. If no separator is given, assume that you use a
blank to separate each syntax element.

If a syntax element is preceded by the % symbol, it indicates a reference that is defined elsewhere. The
string that follows the % symbol is the name of a syntax fragment rather than a literal. For example, the
line 2.1 %OP1 means that you must refer to separate syntax fragment OP1.

The following symbols are used next to the dotted decimal numbers.
? indicates an optional syntax element

The question mark (?) symbol indicates an optional syntax element. A dotted decimal number
followed by the question mark symbol (?) indicates that all the syntax elements with a corresponding
dotted decimal number, and any subordinate syntax elements, are optional. If there is only one
syntax element with a dotted decimal number, the ? symbol is displayed on the same line as the
syntax element, (for example 5? NOTIFY). If there is more than one syntax element with a dotted
decimal number, the ? symbol is displayed on a line by itself, followed by the syntax elements that are
optional. For example, if you hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you know that the
syntax elements NOTIFY and UPDATE are optional. That is, you can choose one or none of them.
The ? symbol is equivalent to a bypass line in a railroad diagram.

! indicates a default syntax element
The exclamation mark (!) symbol indicates a default syntax element. A dotted decimal number
followed by the ! symbol and a syntax element indicate that the syntax element is the default option
for all syntax elements that share the same dotted decimal number. Only one of the syntax elements
that share the dotted decimal number can specify the ! symbol. For example, if you hear the lines 2?
FILE, 2.1! (KEEP), and 2.1 (DELETE), you know that (KEEP) is the default option for the
FILE keyword. In the example, if you include the FILE keyword, but do not specify an option, the
default option KEEP is applied. A default option also applies to the next higher dotted decimal
number. In this example, if the FILE keyword is omitted, the default FILE(KEEP) is used. However,
if you hear the lines 2? FILE, 2.1, 2.1.1! (KEEP), and 2.1.1 (DELETE), the default option
KEEP applies only to the next higher dotted decimal number, 2.1 (which does not have an associated
keyword), and does not apply to 2? FILE. Nothing is used if the keyword FILE is omitted.

* indicates an optional syntax element that is repeatable
The asterisk or glyph (*) symbol indicates a syntax element that can be repeated zero or more times.
A dotted decimal number followed by the * symbol indicates that this syntax element can be used
zero or more times; that is, it is optional and can be repeated. For example, if you hear the line 5.1*
data area, you know that you can include one data area, more than one data area, or no data area.

188 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

If you hear the lines 3* , 3 HOST, 3 STATE, you know that you can include HOST, STATE, both
together, or nothing.

Notes:

1. If a dotted decimal number has an asterisk (*) next to it and there is only one item with that dotted
decimal number, you can repeat that same item more than once.

2. If a dotted decimal number has an asterisk next to it and several items have that dotted decimal
number, you can use more than one item from the list, but you cannot use the items more than
once each. In the previous example, you can write HOST STATE, but you cannot write HOST
HOST.

3. The * symbol is equivalent to a loopback line in a railroad syntax diagram.

+ indicates a syntax element that must be included
The plus (+) symbol indicates a syntax element that must be included at least once. A dotted decimal
number followed by the + symbol indicates that the syntax element must be included one or more
times. That is, it must be included at least once and can be repeated. For example, if you hear the line
6.1+ data area, you must include at least one data area. If you hear the lines 2+, 2 HOST, and
2 STATE, you know that you must include HOST, STATE, or both. Similar to the * symbol, the +
symbol can repeat a particular item if it is the only item with that dotted decimal number. The +
symbol, like the * symbol, is equivalent to a loopback line in a railroad syntax diagram.

Appendix B. Accessibility 189

190 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

Glossary

This glossary defines technical terms and abbreviations that are used in Enterprise Metal C for z/OS
documentation. If you do not find the term you are looking for, refer to the index of the appropriate
Enterprise Metal C for z/OS manual or view the IBM Glossary of Computing Terms (www.ibm.com/
software/globalization/terminology).

The following cross-references are used in this glossary:

• See refers you from a term to a preferred synonym, or from an acronym or abbreviation to the defined
full form.

• See also refers you to a related or contrasting term.

To view glossaries for other IBM products, go to IBM Glossary of Computing Terms (www.ibm.com/
software/globalization/terminology).

A
abstract data type

A mathematical model that includes a structure for storing data and operations that can be performed
on that data. Common abstract data types include sets, trees, and heaps.

access mode

1. The manner in which files are referred to by a computer. See also dynamic access, sequential
access.

2. A form of access permitted for a file.

access specifier
A specifier that defines whether a class member is accessible in an expression or declaration. The
three access specifiers are public, private, and protected.

addressing mode (AMODE)
The attribute of a program module that identifies the addressing range in which the program entry
point can receive control.

address space
The range of addresses available to a computer program or process. Address space can refer to
physical storage, virtual storage, or both.

aggregate

1. A structured collection of data objects that form a data type.

alert

1. A message or other indication that signals an event or an impending event.
2. To cause the user's terminal to give some audible or visual indication that an error or some other

event has occurred.

alert character
A character that in the output stream causes a terminal to alert its user by way of a visual or audible
notification. The alert character is the character designated by a '\a' in the C language. It is
unspecified whether this character is the exact sequence transmitted to an output device by the
system to accomplish the alert function.

alias

1. An alternative name for an integrated catalog facility (ICF) user catalog, a file that is not a Virtual
Storage Access Method (VSAM) file, or a member of a partitioned data set (PDS) or a partitioned
data set extended (PDSE).

© Copyright IBM Corp. 2018 191

http://www.ibm.com/software/globalization/terminology
http://www.ibm.com/software/globalization/terminology
http://www.ibm.com/software/globalization/terminology
http://www.ibm.com/software/globalization/terminology

2. An alternative name used instead of a primary name.

aliasing
A compilation process that attempts to determine what aliases exist, so that optimization does not
result in incorrect program results.

alignment
The storing of data in relation to certain machine-dependent boundaries.

alternate code point
A syntactic code point that permits a substitute code point to be used. For example, the left brace ({)
can be represented by X'B0' and also by X'C0'.

American National Standards Institute (ANSI)
A private, nonprofit organization whose membership includes private companies, U.S. government
agencies, and professional, technical, trade, labor, and consumer organizations. ANSI coordinates the
development of voluntary consensus standards in the U.S.

American Standard Code for Information Interchange (ASCII)
A standard code used for information exchange among data processing systems, data communication
systems, and associated equipment. ASCII uses a coded character set consisting of 7-bit coded
characters. See also Extended Binary Coded Decimal Interchange Code.

AMODE
See addressing mode.

angle bracket
Either the left angle bracket (<) or the right angle bracket (>). In the portable character set, these
characters are referred to by the names <less-than-sign> and <greater-than-sign>.

anonymous union
An unnamed object whose type is an unnamed union.

ANSI
See American National Standards Institute.

AP
See application program.

API
See application programming interface.

application
One or more computer programs or software components that provide a function in direct support of
a specific business process or processes.

application generator
An application development tool that creates applications, application components (panels, data,
databases, logic, interfaces to system services), or complete application systems from design
specifications.

application program (AP)
A complete, self-contained program, such as a text editor or a web browser, that performs a specific
task for the user, in contrast to system software, such as the operating system kernel, server
processes, and program libraries.

application programming interface (API)
An interface that allows an application program that is written in a high-level language to use specific
data or functions of the operating system or another program.

archive library
A facility for grouping application-program object files. The archive library file, when created for
application-program object files, has a special symbol table for members that are object files.

argument
A value passed to or returned from a function or procedure at run time.

argument declaration
See also parameter declaration.

192 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

arithmetic object
An integral object or objects having the float, double, or long double type.

array
In programming languages, an aggregate that consists of data objects, with identical attributes, each
of which can be uniquely referenced by subscripting. See also scalar.

array element
One of the data items in an array.

ASCII
See American Standard Code for Information Interchange.

assembler
A computer program that converts assembly language instructions into object code.

Assembler H
An IBM licensed program that translates symbolic assembler language into binary machine language.

assembler user exit
A routine to tailor the characteristics of an enclave prior to its establishment.

assembly language
A symbolic programming language that represents machine instructions of a specific architecture.

assignment expression
An expression that assigns the value of the right operand expression to the left operand variable and
has as its value the value of the right operand.

automatic call library
A group of modules that are used as secondary input to the binder to resolve external symbols left
undefined after all the primary input has been processed. The automatic call library can contain:
object modules, with or without binder control statements; load modules; and runtime routines.

automatic library call
The process by which the binder resolves external references by including additional members from
the automatic call library.

automatic storage
Storage that is allocated on entry to a routine or block and is freed when control is returned. See also
dynamic storage.

auto storage class specifier
A specifier that enables the programmer to define a variable with automatic storage; its scope is
restricted to the current block.

B
background process

A process that does not require operator intervention but can be run by the computer while the
workstation is used to do other work. See also foreground process.

background processing
A mode of program execution in which the shell does not wait for program completion before
prompting the user for another command.

backslash
The character \. The backslash enables a user to escape the special meaning of a character. That is,
typing a backslash before a character tells the system to ignore any special meaning the character
might have.

binary expression
An expression containing two operands and one operator.

binary stream
A sequence of characters that corresponds on a one-to-one basis with the characters in the file. No
character translation is performed on binary streams.

Glossary 193

binder

1. The z/OS program that processes the output of language translators and compilers into an
executable program (a load module or program object). The binder replaces the linkage editor and
batch loader. See also prelinker.

2. See linkage editor.

bit field
A member of a structure or union that contains 1 or more named bits.

bitwise operator
An operator that manipulates the value of an object at the bit level.

blank character

1. One of the characters that belong to the blank character class as defined via the LC_CTYPE
category in the current locale. In the POSIX locale, a blank character is either a tab or a space
character.

2. A graphic representation of the space character.

block

1. A string of data elements recorded, processed, or transmitted as a unit. The elements can be
characters, words, or physical records.

2. In programming languages, a compound statement that coincides with the scope of at least one of
the declarations contained within it. A block may also specify storage allocation or segment
programs for other purposes.

block statement
In the C language, a group of data definitions, declarations, and statements that are located between
a left brace and a right brace that are processed as a unit. The block statement is considered to be a
single, C-language statement.

boundary alignment
The position in main storage of a fixed-length field, such as halfword or doubleword, which is aligned
on an integral boundary for that unit of information. For example, a word boundary alignment stores
the object in a storage address evenly divisible by four.

brace
Either of the characters left brace ({) and right brace (}). When an object is enclosed in braces, the left
brace immediately precedes the object and the right brace immediately follows it.

bracket
Either of the characters left bracket ([) and right bracket (]).

break statement
A C control statement that contains the keyword break and a semicolon (;). It is used to end an
iterative or a switch statement by exiting from it at any point other than the logical end. Control is
passed to the first statement after the iteration or switch statement.

built-in
In programming languages, pertaining to a language object that is defined in the programming
language specification.

built-in function
A function that is predefined by the compiler and whose code is incorporated directly into the
compiled object rather than called at run time. See also function.

byte-oriented stream
A byte-oriented stream refers to a stream which only single byte input/output is allowed.

C
callable service

A program service provided through a programming interface.

194 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

call chain
A trace of all active routines and subroutines, such as the names of routines and the locations of save
areas, that can be constructed from information included in a system dump.

caller
A function that calls another function.

cancelability point
A specific point within the current thread that is enabled to solicit cancel requests.

carriage return character
A character that in the output stream indicates that printing should start at the beginning of the same
physical line in which the carriage-return character occurred.

case clause
In a C switch statement, a CASE label followed by any number of statements.

case label
The word case followed by a constant expression and a colon. When the selector is evaluated to the
value of the constant expression, the statements following the case label are processed.

cast expression
An expression that converts or reinterprets its operand.

cast operator
An operator that is used for explicit type conversions.

cataloged procedure
A set of job control language (JCL) statements that has been placed in a library and that is retrievable
by name.

CCS
See coded character set.

character

1. A sequence of one or more bytes representing a single graphic symbol or control code.
2. In a computer system, a member of a set of elements that is used for the representation,

organization, or control of data.

character class
A named set of characters sharing an attribute associated with the name of the class. The classes and
the characters that they contain are dependent on the value of the LC_CTYPE category in the current
locale.

character constant
The actual character value (a symbol, quantity, or constant) in a source program that is itself data,
instead of a reference to a field that contains the data.

character set
A defined set of characters with no coded representation assumed that can be recognized by a
configured hardware or software system. A character set can be defined by alphabet, language, script,
or any combination of these items.

character special file
An interface file that provides access to an input or output device, which uses character I/0 instead of
block I/0.

character string
A contiguous sequence of characters terminated by and including the first null byte.

child
A node that is subordinate to another node in a tree structure. Only the root node is not a child.

child enclave
The nested enclave created as a result of certain commands being issued from a parent enclave. See
also nested enclave, parent enclave.

Glossary 195

child process
A process that is created by a parent process and that shares the resources of the parent process to
carry out a request.

C language
A language used to develop application programs in compact, efficient code that can be run on
different types of computers with minimal change.

C library
A system library that contains common C language subroutines for file access, string operations,
character operations, memory allocation, and other functions.

CLIST
See command list.

COBOL
See Common Business Oriented Language.

coded character set (CCS)
A set of unambiguous rules that establishes a character set and the one-to-one relationships between
the characters of the set and their coded representations.

code element set
The result of applying rules that map a numeric code value to each element of a character set. An
element of a character set may be related to more than one numeric code value but the reverse is not
true. However, for state-dependent encodings the relationship between numeric code values to
elements of a character set may be further controlled by state information. The character set may
contain fewer elements than the total number of possible numeric code values; that is, some code
values may be unassigned. X/Open.

code generator
The part of the compiler that physically generates the object code.

code page
A particular assignment of code points to graphic characters. Within a given code page, a code point
can have only one specific meaning. A code page also identifies how undefined code points are
handled. See also code point.

code point

1. An identifier in an alert description that represents a short unit of text. The code point is replaced
with the text by an alert display program.

2. A unique bit pattern that represents a character in a code page. See also code page.

collating element
The smallest entity used to determine the logical ordering of strings. A collating element consists of
either a single character, or two or more characters collating as a single entity. The value of the
LC_COLLATE category in the current locale determines the current set of collating elements. See also
collating sequence.

collating sequence
The relative ordering of collating elements as determined by the setting of the LC_COLLATE category
in the current locale. The character order, as defined for the LC_COLLATE category in the current
locale, defines the relative order of all collating elements, such that each element occupies a unique
position in the order.

collation
The logical ordering of characters and strings according to defined rules.

collection
An abstract class without any ordering, element properties, or key properties.

Collection Class Library
A complete set of abstract data structure such as trees, stacks, queues, and linked lists.

column position
A unit of horizontal measure related to characters in a line. It is assumed that each character in a
character set has an intrinsic column width independent of any output device. Each printable

196 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

character in the portable character set has a column width of one. The standard utilities, when used
as described in this document set, assume that all characters have integral column widths. The
column width of a character is not necessarily related to the internal representation of the character
(numbers of bits or bytes). The column position of a character in a line is defined as one plus the sum
of the column widths of the preceding characters in the line. Column positions are numbered starting
from 1. X/Open.

comma expression
An expression that contains two operands separated by a comma. Although the compiler evaluates
both operands, the value of the right operand is the value of the expression. If the left operand
produces a value, the compiler discards this value.

command
A request to perform an operation or run a program. When parameters, arguments, flags, or other
operands are associated with a command, the resulting character string is a single command.

command list (CLIST)
A language for performing TSO tasks.

Common Business Oriented Language (COBOL)
A high-level programming language that is used primarily for commercial data processing.

compilation unit
A portion of a computer program sufficiently complete to be compiled correctly.

compiler option
A keyword that can be specified to control certain aspects of compilation. Compiler options can
control the nature of the load module generated by the compiler, the types of printed output to be
produced, the efficient use of the compiler, and the destination of error messages.

condition
An expression that can be evaluated as true, false, or unknown. It can be expressed in natural
language text, in mathematically formal notation, or in a machine-readable language.

conditional expression
A compound expression that contains a condition (the first expression), an expression to be evaluated
if the condition has a nonzero value (the second expression), and an expression to be evaluated if the
condition has the value zero (the third expression).

condition handler
A user-written routine or language-specific routine (such as a PL/ION-unit or C signal() function call)
invoked by the Language Environment® condition manager to respond to conditions.

condition manager
The condition manager is the part of the common execution environment that manages conditions by
invoking various user-written and language-specific condition handlers.

constant
A language element that specifies an unchanging value. Constants are classified as string constants or
numeric constants.

constant expression
An expression that has a value that can be determined during compilation and that does not change
during the running of the program.

constant propagation
An optimization technique where constants used in an expression are combined and new ones are
generated. Mode conversions are done to allow some intrinsic functions to be evaluated at compile
time.

constructed reentrancy
The attribute of applications that contain external data and require additional processing to make
them reentrant. See also natural reentrancy.

control character
A character whose occurrence in a particular context initiates, modifies, or stops a control function.

Glossary 197

controlling process
A session leader that has control of a terminal.

controlling terminal
The active workstation from which the process group for that process was started. Each session may
have at most one controlling terminal associated with it, and a controlling terminal is associated with
exactly one session.

control section (CSECT)
The part of a program specified by the programmer to be a relocatable unit, all elements of which are
to be loaded into adjoining main storage locations.

control statement
In programming languages, a statement that is used to interrupt the continuous sequential processing
of programming statements. Conditional statements such as IF, PAUSE, and STOP are examples of
control statements.

conversion

1. In programming languages, the transformation between values that represent the same data item
but belong to different data types. Information may be lost because of conversion since accuracy
of data representation varies among different data types.

2. The process of changing from one form of representation to another. Changing a code point that is
assigned to a character in one code page to its corresponding code point in another code page is
an example of conversion.

Coordinated Universal Time (UTC)
The international standard of time that is kept by atomic clocks around the world.

cross-compiler
A compiler that produces executable files that run on a platform other than the one on which the
compiler is installed.

CSECT
See control section.

current working directory
See working directory.

cursor
A reference to an element at a specific position in a data structure.

D
data abstraction

A data type with a private representation and a public set of operations (functions or operators) which
restrict access to that data type to that set of operations.

data definition (DD)
A program statement that describes the features of, specifies relationships of, or establishes the
context of data. A data definition reserves storage and can provide an initial value.

data definition name (ddname)
The name of a data definition (DD) statement that corresponds to a data control block that contains
the same name.

data definition statement (DD statement)
A job control statement that is used to define a data set for use by a batch job step, started task or
job, or an online user.

data member
The smallest possible piece of complete data. Elements are composed of data members.

data object
An element of data structure such as a file, an array, or an operand that is needed for the execution of
an application.

198 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

data set
The major unit of data storage and retrieval, consisting of a collection of data in one of several
prescribed arrangements and described by control information to which the system has access.

data stream
The commands, control codes, data, or structured fields that are transmitted between an application
program and a device such as printer or nonprogrammable display station.

data structure
In Open Source Initiative (OSI), the syntactic structure of symbolic expressions and their storage
allocation characteristics.

data type
A category that identifies the mathematical qualities and internal representation of data and
functions.

Data Window Services (DWS)
Services provided as part of the Callable Services Library that allow manipulation of data objects such
as VSAM linear data sets and temporary data objects known as TEMPSPACE.

DBCS
See double-byte character set.

DD
See data definition.

ddname
See data definition name.

DD statement
See data definition statement.

dead code
Code that is never referenced, or that is always branched over.

dead store
A store into a memory location that will later be overwritten by another store without any intervening
loads. In this case, the earlier store can be deleted.

decimal constant
A numerical data type used in standard arithmetic operations. Decimal constants can contain any
digits 0 through 9. See also integer constant.

decimal overflow
A condition that occurs when one or more nonzero digits are lost because the destination field in a
decimal operation is too short to contain the results.

declaration

1. In the C language, a description that makes an external object or function available to a function or
a block statement.

2. A statement that establishes the names and characteristics of data objects and functions used in a
program.

default clause
In the C languages, within a switch statement, the keyword default followed by a colon, and one or
more statements. When the conditions of the specified case labels in the switch statement do not
hold, the default clause is chosen.

default initialization
The initial value assigned to a data object by the compiler if no initial value is specified by the
programmer. In C language, external and static variables receive a default initialization of zero, while
the default initialization for auto and register variables is undefined.

definition
A declaration that reserves storage and can provide an initial value for a data object or define a
function.

Glossary 199

degree
The number of children of a node.

dereference
In the C language, to apply the unary operator * to a pointer to access the object the pointer points to.
See also indirection.

descriptor
A PL/I control block that holds information such as string lengths, array subscript bounds, and area
sizes, and is passed from one PL/I routine to another during run time.

device
A piece of equipment such as a workstation, printer, disk drive, tape unit, or remote system.

difference
Given two sets A and B, the set of all elements contained in A but not in B (A-B).

digraph
A combination of two keystrokes used to represent unavailable characters in a C source program.
Digraphs are read as tokens during the preprocessor phase.

directive
A control statement that directs the operation of a feature and is recognized by a preprocessor or
other tool. See also pragma.

directory

1. The part of a partitioned data set that describes the members in the data set.
2. In a hierarchical file system, a grouping of related files.

display
To direct the output to the user's terminal. If the output is not directed to the terminal, the results are
undefined.

do statement
A looping statement that contains the keyword do, followed by a statement (the action), the keyword
while, and an expression in parentheses (the condition).

dot
A symbol (.) that indicates the current directory in a relative path name. See also period.

double-byte character set (DBCS)
A set of characters in which each character is represented by 2 bytes. These character sets are
commonly used by national languages, such as Japanese and Chinese, that have more symbols than
can be represented by a single byte. See also single-byte character set.

double-precision
Pertaining to the use of two computer words to represent a number in accordance with the required
precision.

doubleword
A contiguous sequence of bits or characters that comprises two computer words and is capable of
being addressed as a unit. See also halfword, word.

DSA
See dynamic storage area.

DWS
See Data Window Services.

dynamic
Pertaining to an operation that occurs at the time it is needed rather than at a predetermined or fixed
time.

dynamic access
A process where records can be accessed sequentially or randomly, depending on the form of the
input/output request. See also access mode.

200 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

dynamic allocation
Assignment of system resources to a program when the program is executed rather than when it is
loaded into main storage.

dynamic binding
The act of resolving references to external variables and functions at run time.

dynamic storage
An area of storage that is explicitly allocated by a program or procedure while it is running. See also
automatic storage.

dynamic storage area (DSA)
A type of storage allocation in which storage is assigned to a program or application at run time.

E
EBCDIC

See Extended Binary Coded Decimal Interchange Code.
effective group ID

An attribute of a process that is used in determining various permissions, including file access
permissions. This value is subject to change during the process lifetime.

element
The smallest unit in a table, array, list, set, or other structure. Examples of an element are a value in a
list of values and a data field in an array.

element equality
A relation that determines if two elements are equal.

element occurrence
A single instance of an element in a collection. In a unique collection, element occurrence is
synonymous with element value.

element value
All the instances of an element with a particular value in a collection. In a non-unique collection, an
element value may have more than one occurrence. In a unique collection, element value is
synonymous with element occurrence.

else clause
The part of an if statement that contains the keyword 'else' followed by a statement. The else clause
provides an action that is started when the if condition evaluates to a value of 0 (false).

empty line
A line consisting of only a newline character. X/Open.

empty string
A character array whose first element is a null character.

encapsulation
In object-oriented programming, the technique that is used to hide the inherent details of an object,
function, or class from client programs.

entry point
The address or label of the first instruction processed or entered in a program, routine, or
subroutine.There might be a number of different entry points, each corresponding to a different
function or purpose.

enum constant
See enumeration constant.

enumeration constant (enum constant)
In the C language, an identifier, with an associated integer value, defined in an enumerator. An
enumeration constant may be used anywhere an integer constant is allowed.

enumeration data type
A data type that represents a set of values that a user defines.

Glossary 201

enumeration tag
The identifier that names an enumeration data type.

enumeration type
A data type that defines a set of enumeration constants.

enumerator
An enumeration constant and its associated value.

equivalence class
A grouping of characters or character strings that are considered equal for purposes of collation. For
example, many languages place an uppercase character in the same equivalence class as its
lowercase form, but some languages distinguish between accented and unaccented character forms
for the purpose of collation.

escape sequence
A string of bit combinations that is used to escape from normal data, such as text code points, into
control information.

exception
A condition or event that cannot be handled by a normal process.

executable file
A file that contains programs or commands that perform operations on actions to be taken.

executable program
A program in a form suitable for execution by a computer. The program can be an application or a
shell script.

Extended Binary Coded Decimal Interchange Code (EBCDIC)
A coded character set of 256 8-bit characters developed for the representation of textual data. See
also American Standard Code for Information Interchange.

extended-precision
Pertains to the use of more than two computer words to represent a floating point number in
accordance with the required precision. For example, in z/OS, four computer words are used for an
extended-precision number.

extension
An element or function not included in the standard language.

F
FIFO special file

A type of file with the property that data written to such a file is read on a first-in-first-out (FIFO)
basis.

file descriptor
A positive integer or a data structure that uniquely identifies an open file for the purpose of file
access.

file mode
An object containing the file permission bits and other characteristics of a file.

file permission bit
Information about a file that is used, along with other information, to determine whether a process
has read, write, or execute permission to a file. The use of file permission bits is described in file
access permissions.

file scope
A property of a file name that is declared outside all blocks, classes, and function declarations and
that can be used after the point of declaration in a source file.

filter
A command that reads standard input data, modifies the data, and sends it to standard output. A
pipeline usually has several filters.

202 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

flat collection
A collection that has no hierarchical structure.

float constant

1. A constant representing a non-integral number.
2. A number containing a decimal point, an exponent, or both a decimal point and an exponent. The

exponent contains an "e" or "E," an optional sign (+ or -), and one or more digits (0 through 9).

footprint
The amount of computer storage that is occupied by a computer program. For example, if a program
occupies a large amount of storage, it has a large footprint.

foreground process
A process that must be completed before another command is issued. See also background process.

foreground process group
A group whose member processes have privileges that are denied to background processes when the
controlling terminal is being accessed. Each controlling terminal can have only one foreground
process group.

form-feed character
A character in the output stream that indicates that printing should start on the next page of an output
device. The form-feed character is designated by '\f' in the C language. If the form-feed character is
not the first character of an output line, the result is unspecified. X/Open.

for statement
A looping statement that contains the word for followed by a list of expressions enclosed in
parentheses (the condition) and a statement (the action). Each expression in the parenthesized list is
separated by a semicolon, which cannot be omitted.

forward declaration
A declaration of a class or function made earlier in a compilation unit, so that the declared class or
function can be used before it has been defined.

freestanding application
An application that is created to run without the run-time environment or library with which it was
developed.

free store
Dynamically allocated memory. New and delete are used to allocate and deallocate free store.

function
A named group of statements that can be called and evaluated and can return a value to the calling
statement. See also built-in function.

function call
An expression that transfers the path of execution from the current function to a specified function
(the called function). A function call contains the name of the function to which control is transferred
and a parenthesized list of values.

function declarator
The part of a function definition that names the function, provides additional information about the
return value of the function, and lists the function parameters.

function definition
The complete description of a function. A function definition contains an optional storage class
specifier, an optional type specifier, a function declarator, optional parameter declarations, and a
block statement (the function body).

function prototype
A function declaration that provides type information for each parameter. It is the first line of the
function (header) followed by a semicolon (;). The declaration is required by the compiler at the time
that the function is declared, so that the compiler can check the type.

function scope
Labels that are declared in a function have function scope and can be used anywhere in that function
after their declaration.

Glossary 203

G
GCC

See GNU Compiler Collection.
GDDM

See Graphical Data Display Manager.
Generalized Object File Format (GOFF)

This object module format extends the capabilities of object modules so that they can contain more
information.

global
Pertaining to information available to more than one program or subroutine. See also local.

global variable
A symbol defined in one program module that is used in other program modules that are
independently compiled.

GMT
See Greenwich mean time.

GNU Compiler Collection (GCC)
An open source collection of compilers supporting C, C++, Objective-C, Ada, Java™, and Fortran.

GOFF
See Generalized Object File Format.

Graphical Data Display Manager (GDDM)
An IBM computer-graphics system that defines and displays text and graphics for output on a display
or printer.

graphic character
A visual representation of a character, other than a control character, that is normally produced by
writing, printing, or displaying.

Greenwich mean time (GMT)
The mean solar time at the meridian of Greenwich, England.

H
halfword

A contiguous sequence of bits or characters that constitutes half a computer word and can be
addressed as a unit. See also doubleword, word.

hash function
A function that determines which category, or bucket, to put an element in. A hash function is needed
when implementing a hash table.

hash table

1. A data structure that divides all elements into (preferably) equal-sized categories, or buckets, to
allow quick access to the elements. The hash function determines which bucket an element
belongs in.

2. A table of information that is accessed by way of a shortened search key (the hash value). The use
of a hash table minimizes average search time.

header file
See include file.

heap storage
An area of storage used for allocation of storage that has a lifetime that is not related to the execution
of the current routine. The heap consists of the initial heap segment and zero or more increments.

hexadecimal constant
A constant, usually starting with special characters, that contains only hexadecimal digits.

204 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

High Level Assembler
An IBM licensed program that translates symbolic assembler language into binary machine language.

hiperspace memory file
A type of file that is stored in a single buffer in an address space, with the rest of the data being kept
in a hiperspace. In contrast, for regular files, all the file data is stored in a single address space.

hook
A location in a compiled program where the compiler has inserted an instruction that allows
programmers to interrupt the program (by setting breakpoints) for debugging purposes.

hybrid code
Program statements that have not been internationalized with respect to code page, especially where
data constants contain variant characters. Such statements can be found in applications written in
older implementations of MVS™, which required syntax statements to be written using code page
IBM-1047 exclusively. Such applications cannot be converted from one code page to another using
iconv().

I
ID

See identifier.
identifier (ID)

One or more characters used to identify or name a data element and possibly to indicate certain
properties of that data element.

if statement
A conditional statement that specifies a condition to be tested and the action to be taken if the
condition is satisfied.

ILC

1. See interlanguage communication.
2. See interlanguage call.

implementation-defined
Pertaining to behavior that is defined by the compiler rather than by a language standard. Programs
that rely on implementation-defined behavior may behave differently when compiled with different
compilers. See also undefined behavior.

IMS
See Information Management System.

include directive
A preprocessor directive that causes the preprocessor to replace the statement with the contents of a
specified file.

include file
A text file that contains declarations that are used by a group of functions, programs, or users.

incomplete type
A type that has no value or meaning when it is first declared. There are three incomplete types: void,
arrays of unknown size and structures, and unions of unspecified content.

indirection

1. A mechanism for connecting objects by storing, in one object, a reference to another object. See
also dereference.

2. In the C language, the application of the unary operator * to a pointer to access the object to which
the pointer points.

induction variable
A controlling variable of a loop.

Glossary 205

Information Management System (IMS)
Any of several system environments that have a database manager and transaction processing that
can manage complex databases and terminal networks.

initial heap
A heap that is controlled by the HEAP run-time option and designated by a heap_id of 0.

initializer
An expression used to initialize data objects.

inline
To replace a function call with a copy of the function's code during compilation.

inline function
A function whose actual code replaces a function call. A function that is both declared and defined in a
class definition is an example of an inline function. Another example is one which you explicitly
declared inline by using the keyword inline. Both member and non-member functions can be inlined.

input stream
A sequence of control statements and data submitted to an operating system by an input device.

instruction
A program statement that specifies an operation to be performed by the computer, along with the
values or locations of operands. This statement represents the programmer's request to the
processor to perform a specific operation.

instruction scheduling
An optimization technique that reorders instructions in code to minimize execution time.

integer constant
A decimal, octal, or hexadecimal constant. See also decimal constant.

integral object
A character object, an object having an enumeration type, an object having variations of the type int,
or an object that is a bit field.

Interactive System Productivity Facility (ISPF)
An IBM licensed program that serves as a full-screen editor and dialog manager. Used for writing
application programs, it provides a means of generating standard screen panels and interactive
dialogs between the application programmer and the terminal user.

interlanguage call (ILC)
A call to a procedure or function made by a program written in one language to a procedure or
function coded in a different language.

interlanguage communication (ILC)
The ability of routines written in different programming languages to communicate. ILC support
enables the application writer to readily build applications from component routines written in a
variety of languages.

interoperability
The ability of a computer or program to work with other computers or programs.

interprocess communication (IPC)
The process by which programs send messages to each other. Sockets, semaphores, signals, and
internal message queues are common methods of interprocess communication.

IPC
See interprocess communication.

ISPF
See Interactive System Productivity Facility.

iteration
The repetition of a set of computer instructions until a condition is satisfied.

206 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

J
JCL

See job control language.
job control language (JCL)

A command language that identifies a job to an operating system and describes the job requirements.

K
kernel

The part of an operating system that contains programs for such tasks as input/output, management
and control of hardware, and the scheduling of user tasks.

keyword

1. One of the predefined words of a programming language, artificial language, application, or
command. See also operand, parameter.

2. A symbol that identifies a parameter in job control language (JCL).

L
label

An identifier within or attached to a set of data elements.
last element

The element visited last in an iteration over a collection. Each collection has its own definition for last
element. For example, the last element of a sorted set is the element with the largest value.

leaf
In a tree, an entry or node that has no children.

library

1. A collection of model elements, including business items, processes, tasks, resources, and
organizations.

2. A set of object modules that can be specified in a link command.

linkage
Refers to the binding between a reference and a definition. A function has internal linkage if the
function is defined inline as part of the class, is declared with the inline keyword, or is a non-member
function declared with the static keyword. All other functions have external linkage.

linkage editor
A computer program for creating load modules from one or more object modules or load modules by
resolving cross-references among the modules and, if necessary, adjusting addresses.

linker
A program that resolves cross-references among separately compiled object modules and then
assigns final addresses to create a single executable program.

link pack area (LPA)
The portion of virtual storage below 16 MB that contains frequently used modules.

literal
A symbol or a quantity in a source program that is itself data, rather than a reference to data.

loader
A program that copies an executable file into main storage so that the file can be run.

load module
A program in a form suitable for loading into main storage for execution.

Glossary 207

local

1. Pertaining to information that is defined and used only in one subdivision of a computer program.
See also global.

2. In programming languages, pertaining to the relationship between a language object and a block
such that the language object has a scope contained in that block.

local custom
A convention of a geographical area or territory for such things as date, time, and currency formats. X/
Open.

locale
A setting that identifies language or geography and determines formatting conventions such as
collation, case conversion, character classification, the language of messages, date and time
representation, and numeric representation.

local scope
A name declared in a block that has local scope and can only be used in that block.

loop unrolling
An optimization that increases the step of a loop, and duplicates the expressions within a loop to
reflect the increase in the step. This can improve instruction scheduling and memory access time.

LPA
See link pack area.

lvalue
An expression that represents a data object that can be viewed, tested, and changed. An lvalue is
usually the left operand in an assignment expression.

M
macro

An instruction that causes the execution of a predefined sequence of instructions.
macro call

See macro.
main function

A function that has the identifier main. Each program must have exactly one function named main.
The main function is the first user function that receives control when a program starts to run.

makefile
In UNIX, a text file containing a list of an application's parts. The make utility uses makefiles to
maintain application parts and dependencies.

make utility
A utility that maintains all of the parts and dependencies for an application. The make utility uses a
makefile to keep the parts of a program synchronized. If one part of an application changes, the make
utility updates all other files that depend on the changed part.

manipulator
A value that can be inserted into streams or extracted from streams to affect or query the behavior of
the stream.

method file

1. For ASCII locales, a file that defines the method functions to be used by C runtime locale-sensitive
interfaces. A method file also identifies where the method functions can be found. IBM supplies
several method files used to create its standard set of ASCII locales. Other method files can be
created to support customized or user-created code pages. Such customized method files replace
IBM-supplied charmap method functions with user-written functions.

2. A file that allows users to indicate to the localedef utility where to look for user-provided methods
for processing user-designed code pages.

208 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

migrate
To install a new version or release of a program to replace an earlier version or release.

module
A program unit that is discrete and identifiable with respect to compiling, combining with other units,
and loading.

multibyte character
A mixture of single-byte characters from a single-byte character set and double-byte characters from
a double-byte character set.

multibyte control
See escape sequence.

multicharacter collating element
A sequence of two or more characters that collate as an entity. For example, in some coded character
sets, an accented character is represented by a non-spacing accent, followed by the letter. Other
examples are the Spanish elements ch and ll. X/Open.

multiprocessor
A processor complex that has more than one central processor.

multitasking
A mode of operation in which two or more tasks can be performed at the same time.

mutex
See mutual exclusion.

mutex attribute object
A type of attribute object with which a user can manage mutual exclusion (mutex) characteristics by
defining a set of variables to be used during its creation. A mutex attribute object eliminates the need
to redefine the same set of characteristics for each mutex object created. See also mutual exclusion.

mutex object
An identifier for a mutual exclusion (mutex).

mutual exclusion (mutex)
A flag used by a semaphore to protect shared resources. The mutex is locked and unlocked by
threads in a program. See also mutex attribute object.

N
namespace

A category used to group similar types of identifiers.
natural reentrancy

The attribute of applications that contain no static external data and do not require additional
processing to make them reentrant. See also constructed reentrancy.

nested enclave
A new enclave created by an existing enclave. The nested enclave that is created must be a new main
routine within the process. See also child enclave, parent enclave.

newline character (NL)
A control character that causes the print or display position to move down one line.

nickname
See alias.

NL
See newline character.

nonprinting character
See control character.

NUL
See null character.

Glossary 209

null character (NUL)
A control character with the value of X'00' that represents the absence of a displayed or printed
character.

null pointer
The value that is obtained by converting the number 0 into a pointer; for example, (void *) 0. The C
language guarantees that this value will not match that of any legitimate pointer, so it is used by many
functions that return pointers to indicate an error.

null statement
A statement that consists of a semicolon.

null string
A character or bit string with a length of zero.

null value
A parameter position for which no value is specified.

null wide-character code
A wide-character code with all bits set to zero.

number sign
The character #, which is also referred to as the hash sign.

O
object

1. A region of storage. An object is created when a variable is defined. An object is destroyed when it
goes out of scope.

2. In object-oriented design or programming, a concrete realization (instance) of a class that consists
of data and the operations associated with that data. An object contains the instance data that is
defined by the class, but the class owns the operations that are associated with the data.

object module
A set of instructions in machine language that is produced by a compiler or assembler from a
subroutine or source module and can be input to the linking program. The object module consists of
object code.

octal constant
The digit 0 (zero) followed by any digits 0 through 7.

open file
A file that is currently associated with a file descriptor.

operand
An entity on which an operation is performed.

operating system (OS)
A collection of system programs that control the overall operation of a computer system.

operator precedence
In programming languages, an order relationship that defines the sequence of the application of
operators with an expression.

orientation
The orientation of a stream refers to the type of data which may pass through the stream. A stream
without orientation is one on which no stream I/O has been performed.

OS
See operating system.

overflow
The condition that occurs when data cannot fit in the designated field.

210 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

overlay
The technique of repeatedly using the same areas of internal storage during different stages of a
program. Unions are used to accomplish this in C.

P
parameter (parm)

A value or reference passed to a function, command, or program that serves as input or controls
actions. The value is supplied by a user or by another program or process. See also keyword, operand.

parameter declaration
The description of a value that a function receives. A parameter declaration determines the storage
class and the data type of the value. See also argument declaration.

parent enclave
The enclave that issues a call to system services or language constructs to create a nested (or child)
enclave. See also child enclave, nested enclave.

parent process
A process that is created to carry out a request or set of requests. The parent process, in turn, can
create child processes to process requests for the parent.

parent process ID (PPID)
An attribute of a new process identifying the parent of the process. The parent process ID of a process
is the process ID of its creator for the lifetime of the creator. After the creator's lifetime has ended,
the parent process ID is the process ID of an implementation-dependent system process.

parm
See parameter.

partitioned concatenation
The allocation of partitioned data sets (PDSs), partitioned data sets extended (PDSEs), UNIX file
directories, or any combination of these such that the basic partitioned access method (BPAM)
retrieves them as a single data set.

partitioned data set (PDS)
A data set on direct access storage that is divided into partitions, called members, each of which can
contain a program, part of a program, or data. See also sequential data set.

partitioned data set extended (PDSE)
A data set that contains an indexed directory and members that are similar to the directory and
members of partitioned data sets (PDSs). See also library.

path name
A name that specifies all directories leading to a file plus the file name itself.

path name resolution
The process of resolving a path name to a particular file in a file hierarchy. There may be multiple path
names that resolve to the same file. X/Open.

pattern
A sequence of characters used either with regular expression notation or for path name expansion, as
a means of selecting various characters strings or path names, respectively. The syntaxes of the two
patterns are similar, but not identical.

PDS
See partitioned data set.

PDSE
See partitioned data set extended.

period
The symbol ".". The term dot is used for the same symbol when referring to a web address or file
extension. This character is named <period> in the portable character set. See also dot.

Glossary 211

permission
The ability to access a protected object, such as a file or directory. The number and meaning of
permissions for an object are defined by the access control list.

persistent environment
An environment that once created by the user may be used repeatedly without incurring the overhead
of initialization and termination for each call. The environment remains available until explicitly
terminated by the user.

PGID
See process group ID.

PID
See process ID.

platform
The combination of an operating system and hardware that makes up the operating environment in
which a program runs.

pointer
A data element or variable that holds the address of a data object or a function. See also scalar.

portability

1. The ability of a program to run on more than one type of computer system without modification.
2. The ability of a programming language to compile successfully on different operating systems

without requiring changes to the source code.

portable character set
A set of characters, specified in POSIX 1003.2, section 4, that must be supported by conforming
implementations.

portable file name character set
The set of characters from which portable file names must be constructed to be portable across
implementations conforming to the ISO POSIX-1 standard and to ISO/IEC 9945.

positional parameter
A parameter that must appear in a specified location, relative to other parameters.

PPID
See parent process ID.

pragma
A standardized form of comment which has meaning to a compiler. A pragma usually conveys non-
essential information, often intended to help the compiler to optimize the program. See also directive.

precedence
The priority system for grouping different types of operators with their operands.

predefined macro
An identifier predefined by the compiler, which will be expanded by the preprocessor during
compilation.

preinitialization
A process by which an environment or library is initialized once and can then be used repeatedly to
avoid the inefficiency of initializing the environment or library each time it is needed.

prelinker
A utility that preprocesses an object for certain programs. See also binder.

preprocessor
A routine that performs initial processing and translation of source code or data prior to compiling the
source code or processing the data in another program such as an emulator.

preprocessor directive
In the C language, a statement that begins with the symbol # and is interpreted by the preprocessor
during compilation.

212 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

preprocessor statement
In the C language, a statement that begins with the symbol # and contains instructions that the
preprocessor can interpret.

primary expression

1. Literals, names, and names qualified by the :: (scope resolution) operator.
2. Any of the following types of expressions: a) identifiers, b) parenthesized expressions, c) function

calls, d) array element specifications, e) structure member specifications, or f) union member
specifications.

process

1. An address space and single thread of control that executes within that address space, and its
required system resources. A process is created by another process issuing the fork() function. The
process that issues the fork() function is known as the parent process, and the new process
created by the fork() function is known as the child process.

2. An instance of a program running on a system and the resources that it uses.

process group
A collection of processes in a system that is identified by a process group ID.

process group ID (PGID)
The unique identifier representing a process group during its lifetime. A process group ID is a positive
integer that is not reused by the system until the process group lifetime ends.

process group lifetime
A period of time that begins when a process group is created and ends when the last remaining
process in the group leaves the group because either it is the end of the last process' lifetime or the
last remaining process is calling the setsid() or setpgid() functions. X/Open. ISO.1.

process ID (PID)
The unique identifier that represents a process. A process ID is a positive integer and is not reused
until the process lifetime ends.

process lifetime
The period of time that begins when a process is created and ends when the process ID is returned to
the system. X/Open. ISO.1. After a process is created with a fork() function, it is considered active. Its
thread of control and address space exist until it terminates. It then enters an inactive state where
certain resources may be returned to the system, although some resources, such as the process ID,
are still in use. When another process executes a wait() or waitpid() function for an inactive process,
the remaining resources are returned to the system. The last resource to be returned to the system is
the process ID. At this time, the lifetime of the process ends.

profiling
A performance analysis process that is based on statistics for the resources that are used by a
program or application.

program object
All or part of a computer program in a form suitable for loading into virtual storage for execution.
Program objects are stored in partitioned data set extended (PDSE) program libraries and have fewer
restrictions than load modules. Program objects are produced by the binder.

program unit
See compilation unit.

prototype
A function declaration or definition that includes both the return type of the function and the types of
its parameters.

Q
QMF

See Query Management Facility.

Glossary 213

qualified name

1. A data set name consisting of a string of names separated by periods; for example,
TREE.FRUIT.APPLE is a qualified name.

qualified type name
A name used to reduce complex class name syntax by using typedefs to represent qualified class
names.

Query Management Facility (QMF)
An IBM query and report writing facility that supports a variety of tasks such as data entry, query
building, administration, and report analysis.

queue
A data structure for processing work in which the first element added to the queue is the first element
processed. This order is referred to as first-in first-out (FIFO).

quotation mark
The characters " and '.

R
radix character

The character that separates the integer part of a number from the fractional part. X/Open .
random access

An access mode in which records can be referred to, read from, written to, or removed from a file in
any order.

real group ID
The attribute of a process that, at the time of process creation, identifies the group of the user who
created the process. This value is subject to change during the process lifetime.

real user ID
The attribute of a process that, at the time a process is created, identifies the user who created the
process.

reason code
A value used to indicate the specific reason for an event or condition.

reassociation
An optimization technique that rearranges the sequence of calculations in a subscript expression
producing more candidates for common expression elimination.

redirection
In a shell, a method of associating files with the input or output of commands.

reentrant
The attribute of a program or routine that allows the same copy of the program or routine to be used
concurrently by two or more tasks.

refresh
To ensure that the information on the user's terminal screen is up-to-date.

register variable
A variable defined with the register storage class specifier. Register variables have automatic storage.

regular expression

1. A set of characters, meta characters, and operators that define a string or group of strings in a
search pattern.

2. A string containing wildcard characters and operations that define a set of one or more possible
strings.

3. A mechanism for selecting specific strings from a set of character strings.

214 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

regular file
A file that is a randomly accessible sequence of bytes, with no further structure imposed by the
system. [POSIX.1]

relation
An unordered flat collection class that uses keys, allows for duplicate elements, and has element
equality.

relative path name
A string of characters that is used to refer to an object and that starts at some point in the directory
hierarchy other than the root. The starting point is frequently a user's current directory.

reserved word
A word that is defined by a programming language and that cannot be used as an identifier or changed
by the user.

residency mode (RMODE)
In z/OS, a program attribute that refers to where a module is prepared to run. RMODE can be 24 or
ANY. ANY refers to the fact that the module can be loaded either above or below the 16M line. RMODE
24 means the module expects to be loaded below the 16M line.

reverse solidus
RMODE

See residency mode.
runtime environment

A set of resources that are used to run a program or process.
runtime library

A compiled collection of functions whose members can be referred to by an application program at
run time.

S
SBCS

See single-byte character set.
scalar

An arithmetic object, an enumerated object, or a pointer to an object.
scope

A part of a source program in which an object is defined and recognized.
SDK

See software development kit.
semaphore

An object used by multi-threaded applications for signaling purposes and for controlling access to
serially reusable resources. Processes can be locked to a resource with semaphores if the processes
follow certain programming conventions.

sequence
A sequentially ordered flat collection.

sequential access
The process of referring to records one after another in the order in which they appear on the file. See
also access mode.

sequential concatenation
The allocation of sequential data sets, partitioned data set (PDS) members, partitioned data set
extended (PDSE) members, UNIX files, or any combination of these such that the system retrieves
them as a single, sequential, data set.

sequential data set
A data set whose records are organized based on their successive physical positions, such as on
magnetic tape. See also partitioned data set.

Glossary 215

session
A collection of process groups established for job control purposes.

shell
A software interface between users and an operating system. Shells generally fall into one of two
categories: a command line shell, which provides a command line interface to the operating system;
and a graphical shell, which provides a graphical user interface (GUI).

signal

1. A mechanism by which a process can be notified of, or affected by, an event occurring in the
system. Examples of such events include hardware exceptions and specific actions by processes.

2. In operating system operations, a method of inter-process communication that simulates software
interrupts.

3. A condition that might or might not be reported during program execution. For example, a signal
can represent erroneous arithmetic operations, such as division by zero.

signal handler
A subroutine or function that is called when a signal occurs.

single-byte character set (SBCS)
A coded character set in which each character is represented by a 1-byte code. A 1-byte code point
allows representation of up to 256 characters. See also double-byte character set.

single precision
The use of one computer word to represent a number, in accordance with the required precision.

slash
The character /, also known as forward slash. This character is named <slash> in the portable
character set.

socket
In the Network Computing System (NCS), a port on a specific host; a communications end point that is
accessible through a protocol family's addressing mechanism. A socket is identified by a socket
address.

software development kit (SDK)
A set of tools, APIs, and documentation to assist with the development of software in a specific
computer language or for a particular operating environment.

sorted map
A sorted flat collection with key and element equality.

sorted relation
A sorted flat collection that uses keys, has element equality, and allows duplicate elements.

sorted set
A sorted flat collection with element equality.

source module
See source program.

source program
A set of instructions that are written in a programming language and must be translated into machine
language before the program can be run.

space character
In the portable character set, the <space> character.

spanned record
A logical record stored in more than one block on a storage medium.

spill area
A storage area that is used to save the contents of registers.

square bracket
See bracket.

216 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

stack frame
See dynamic storage area.

standard error (STDERR)
The output stream to which error messages or diagnostic messages are sent. See also standard input,
standard output.

standard input (STDIN)
An input stream from which data is retrieved. Standard input is normally associated with the
keyboard, but if redirection or piping is used, the standard input can be a file or the output from a
command. See also standard error.

standard output (STDOUT)
The output stream to which data is directed. Standard output is normally associated with the console,
but if redirection or piping is used, the standard output can be a file or the input to a command. See
also standard error.

stanza
A grouping of options in a configuration file to control various aspects of compilation by default.

statement
In programming languages, a language construct that represents a step in a sequence of actions or a
set of declarations.

static binding
The act of resolving references to external variables and functions before run time.

STDERR
See standard error.

STDIN
See standard input.

STDOUT
See standard output.

storage class specifier
A storage class keyword that determines storage duration, scope, and linkage.

stream
A file access object that allows access to an ordered sequence of characters, as described by the ISO
C standard. Such objects can be created by the fdopen() or fopen() functions, and are associated with
a file descriptor. A stream provides the additional services of user-selectable buffering and formatted
input and output.

string
A contiguous sequence of bytes terminated by and including the first null byte.

string constant
Zero or more characters enclosed in double quotation marks. See also string literal.

string literal
Zero or more characters enclosed in double quotation marks. See also string constant.

striped data set
An extended-format data set that occupies multiple volumes. A striped data set is a software
implementation of sequential data striping.

struct
See structure.

struct tag
See structure tag.

structure
A class data type that contains an ordered group of data objects. Unlike an array, the data objects
within a structure can have varied data types.

structure tag
The identifier that names a structure data type.

Glossary 217

stub routine
Within a runtime library, a routine that contains the minimum lines of code needed to locate a given
routine.

subprogram
In the IPA Link version of the Inline Report listing section, an equivalent term for 'function'.

subscript
One or more expressions, each enclosed in brackets, that follow an array name. A subscript refers to
an element in an array.

subtree
A tree structure created by arbitrarily denoting a node to be the root node in a tree. A subtree is
always part of a whole tree.

superset
Given two sets A and B, A is a superset of B if and only if all elements of B are also elements of A. That
is, A is a superset of B if B is a subset of A.

support
In system development, to provide the necessary resources for the correct operation of a functional
unit.

switch expression
The controlling expression of a switch statement.

switch statement
A C language statement that causes control to be transferred to one of several statements depending
on the value of an expression.

system default
A default value defined in the system profile.

system process
An implementation-dependent object, other than a process executing an application, that has a
process ID. X/Open.

T
tab character

A character that indicates that printing or displaying should start at the next horizontal position on the
current line. The tab is designated by '\t' in the C language and is named in the portable character set.

text file
A file that contains only printable characters.

thread
A stream of computer instructions that is in control of a process. In some operating systems, a thread
is the smallest unit of operation in a process. Several threads can run concurrently, performing
different jobs.

tilde
One of the accent marks in Latin script (~).

token
The basic syntactic unit of a computing language. A token consists of one or more characters,
excluding the blank character and excluding characters within a string constant or delimited identifier.

toolchain
A collection of programs or tools used to develop a product.

traceback
A section of a dump that provides information about the stack frame, the program unit address, the
entry point of the routine, the statement number, and status of the routines on the call-chain at the
time the traceback was produced.

218 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

trigraph
A sequence of three graphic characters that represent another graphic character. For example, in the
C programming language, the trigraph ??= is used to denote the # character.

truncate
To shorten a field, value, statement, or string.

type definition
A definition of a name for a data type.

type specifier
In programming languages, a keyword used to indicate the data type of an object or function being
declared.

U
ultimate consumer

The target for data in an input and output operation. An ultimate consumer can be a file, a device, or
an array of bytes in memory.

ultimate producer
The source for data in an input and output operation. An ultimate producer can be a file, a device, or
an array of bytes in memory.

unary expression
An expression that contains one operand.

undefined behavior
Referring to a program or function that might produce erroneous results without warning because of
its use of an indeterminate value, or because of erroneous program constructs or erroneous data. See
also implementation-defined.

union tag
An identifier that names a union data type.

UNIX System Services
An element of z/OS that creates a UNIX environment that conforms to XPG4 UNIX 1995 specifications
and that provides two open-system interfaces on the z/OS operating system: an application
programming interface (API) and an interactive shell interface.

UTC
See Coordinated Universal Time.

V
volatile attribute

An attribute of a data object that indicates the object is changeable. Any expression referring to a
volatile object is evaluated immediately (for example, assignments).

W
while statement

A looping statement that executes one or more instructions repeatedly during the time that a
condition is true.

white space
A sequence of one or more characters, such as the blank character, the newline character, or the tab
character, that belong to the space character class.

wide character
A character whose range of values can represent distinct codes for all members of the largest
extended character set specified among the supporting locales.

Glossary 219

wide-character code
An integral value that corresponds to a single graphic symbol or control code.

wide-character string
A contiguous sequence of wide characters terminated by and including the first instance of a null wide
character.

wide-oriented stream
A wide-oriented stream refers to a stream which only wide character input/output is allowed.

word
A fundamental unit of storage that refers to the amount of data that can be processed at a time. Word
size is a characteristic of the computer architecture. See also doubleword, halfword.

working directory
The active directory. When a file name is specified without a directory, the current directory is
searched.

writable static area (WSA)
An area of memory in a program that is modifiable during the running of a program. Typically, this area
contains global variables and function and variable descriptors for dynamic link libraries (DLLs).

WSA
See writable static area.

220 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

Notices

This information was developed for products and services offered in the U.S.A. IBM may not offer the
products, services, or features discussed in this document in other countries. Consult your local IBM
representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that
does not infringe any IBM intellectual property right may be used instead. However, it is the user's
responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not give you any license to these patents. You can send
license inquiries, in writing, to:

 IBM Corporation
 J74/G4
 555 Bailey Avenue
 San Jose, CA 95141-1099
 U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

 Intellectual Property Licensing
 Legal and Intellectual Property Law
 IBM Japan, Ltd.
 3-2-12, Roppongi, Minato-ku, Tokyo 106-8711

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law:

 INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES
 THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND,
 EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
 THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
 MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore,
this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be incorporated in new
editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the
program(s) described in this publication at any time without notice.

Any references in this publication to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

Programming interface information
This publication documents intended Programming Interfaces that allow the customer to write Enterprise
Metal C for z/OS programs.

© Copyright IBM Corp. 2018 221

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
Copyright and Trademark information (www.ibm.com/legal/copytrade.shtml).

Adobe, Acrobat, PostScript and all Adobe-based trademarks are either registered trademarks or
trademarks of Adobe Systems Incorporated in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.

Standards
The following standard is supported:

• The C language is consistent with Programming languages - C (ISO/IEC 9899:1999) and a subset of
Programming languages - C (ISO/IEC 9899:2011). For more information, see International Organization
for Standardization (ISO) (www.iso.org).

The following standards are supported in combination with the z/OS UNIX System Services element:

• A subset of IEEE Std. 1003.1-2001 (Single UNIX Specification, Version 3). For more information, see
IEEE (www.ieee.org).

• IEEE Std 1003.1—1990, IEEE Standard Information Technology—Portable Operating System Interface
(POSIX)—Part 1: System Application Program Interface (API) [C language], copyright 1990 by the
Institute of Electrical and Electronic Engineers, Inc.

• The core features of IEEE P1003.1a Draft 6 July 1991, Draft Revision to Information Technology—
Portable Operating System Interface (POSIX), Part 1: System Application Program Interface (API) [C
Language], copyright 1992 by the Institute of Electrical and Electronic Engineers, Inc.

• IEEE Std 1003.2—1992, IEEE Standard Information Technology—Portable Operating System Interface
(POSIX)—Part 2: Shells and Utilities, copyright 1990 by the Institute of Electrical and Electronic
Engineers, Inc.

• The core features of IEEE Std P1003.4a/D6—1992, IEEE Draft Standard Information Technology—
Portable Operating System Interface (POSIX)—Part 1: System Application Program Interface (API)—
Amendment 2: Threads Extension [C language], copyright 1990 by the Institute of Electrical and
Electronic Engineers, Inc.

• The core features of IEEE 754-1985 (R1990) IEEE Standard for Binary Floating-Point Arithmetic (ANSI),
copyright 1985 by the Institute of Electrical and Electronic Engineers, Inc.

• X/Open CAE Specification, System Interfaces and Headers, Issue 4 Version 2, copyright 1994 by The
Open Group

• X/Open CAE Specification, Networking Services, Issue 4, copyright 1994 by The Open Group
• X/Open Specification Programming Languages, Issue 3, Common Usage C, copyright 1988, 1989, and

1992 by The Open Group
• United States Government's Federal Information Processing Standard (FIPS) publication for the

programming language C, FIPS-160, issued by National Institute of Standards and Technology, 1991

222 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

http://www.ibm.com/legal/copytrade.shtml
http://www.iso.org
http://www.iso.org
http://www.ieee.org

Index

Special Characters
_LP64 macro

64-bit 22
#pragma csect

packaging products 185
shipping fixes 185

Numerics
32-bit application

recompiling as 64-bit 5
64-bit

_LP64 macro 22
environment 3
migrating from 32-bit 7
pointers 16
sprintf 20
structure alignment 8

64-bit virtual memory
IPA(LINK) 8

A
ABEND, compiler

insufficient storage 8
MEMLIMIT system parameter and IMEMLIM variable 8

accessibility
contact IBM 187
features 187

addressing capabilities
ILP32 and LP64 3

AGGRCOPY compiler option 180
alignment

z/OS basic rule 8
alloca() library function 167
ANSIALIAS compiler option 180
ARCH compiler option 172
arithmetic

constructions 161
ASSERT(RESTRICT) compiler option 180
assistive technologies 187
atoi() library function 167

B
bit fields

referencing
and optimization 162

built-in functions
__builtin_expect 166

C
catalogued procedures

IPA link 8

catalogued procedures (continued)
with IMEMLIM variable 8

cds() library function 167
clearing memory 167
code

motion 170
common expression elimination 169
COMPACT compiler option 180
compiler diagnostics

ensuring code portability 6
compiler options

CSECT 185
for packaging products 185

COMPRESS compiler option 180
constant

propagation 170
constructed reentrancy 23
contact

z/OS 187
conversions

32-bit to 64-bit 17
integers 17
pointers 17

cs() library function 167
CSECT (control section)

compiler option 185
CSECT compiler option

packaging products 185
shipping fixes 185

D
data alignment

64-bit 18
data models

ILP32 and LP64 3
data structures

rule of alignment 8
data type sizes

ILP32 and LP64 3
data types

referencing bit fields
and optimization 162

dead code elimination 170
dead store elimination 170
declarations

and optimization
referencing bit fields 162

disjoint pragma 163

E
ELPA (Extended Link Pack Area) 24
environment

64-bit 3
examples

ccngop3 161

Index 223

execution_frequency pragma 163
export pragma 163
expressions, optimizing

recommendations 160
external

static 24
variables 159, 163

F
feedback viii
fixes

++PTF statement 185, 186
shipping 185, 186

FLOAT compiler option 180
for statement 162
functions

arguments 159

G
global variables 159
graph coloring register allocation 170

H
HGPR compiler option 181
HOT compiler option 174

I
IEFUSI exit routine

MEMLIMITvalue 8
if statement 162
ILP32

and LP64 3
ILP32 to LP64 migrations

alignment differences 9
alignment issues 8
assignment issues 12
conditional compiler directives 22
conversions between int and pointer 17
debugging 22
ensuring portability 6
explicit types 21
function prototypes 22
header files 16, 20
LONG_MAX 20
padding 21
pointer cast conversions 17
pointer declarations 16
portability issues 7, 12
portable coding 20
post-migration activities 6
pre-migration activities 5
precision 17
shared structures 18, 21
suffixes 21
type definitions 20
unsuffixed numbers 19

IMEMLIM variable
to override the MEMLIMIT default 8

INFO compiler option

INFO compiler option (continued)
ensuring portability to LP64 6

inlining
optimization 173
suggestions 173
under IPA 174

instruction scheduling 170
integer constants

64-bit 17
IPA

flow of processing
IPA 176
IPA compile step 177
IPA link step 178
non-IPA 176

IPA(LINK) compiler option 8
isalnum() macro 167
isalpha() macro 167
iscntrl() macro 167
isdigit() macro 167
isgraph() macro 167
islower() macro 167
isolated_call 163
isprint() macro 167
ispunct() macro 167
isspace() macro 167
isupper() macro 167
isxdigit() macro 167

J
JCL procedures

64-bit virtual memory 8
setting MEMLIMIT value 8

K
keyboard

navigation 187
PF keys 187
shortcut keys 187

L
leaves pragma 164
LIBANSI compiler option 181
library extensions

packaging 185
linking

for packaging products 185
local

constant propagation 169
expression elimination 169
variables 158

loop statements, optimizing 161
LP64

and ILP32 3
LP64 environment

advantages and disadvantages 4
application performance and program size 4
migrating applications to 5
pointer assignment 16
restrictions 5

224 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

LP64 strategy 5
LPA (Link Pack Area) 24

M
mainframe

education vii
memcmp library function 167, 168
MEMLIMIT default value

64-bit virtual memory 8
overriding 8
setting 8

memset library function 167
migrating applications

from ILP32 to LP64 5
migration issues, ILP32–to-LP64 7

N
natural reentrancy 23
navigation

keyboard 187

O
optimization

additional compiler options 180
ANSI aliasing 155
application performance 183
arithmetic constructions 161
built-in functions

examples 167
code motion 170
common expression elimination 169
compilation time 183
constant propagation 170
control constructs 161
conversions 161
dead code elimination 170
dead store elimination 170
declarations 162
expressions 160
function arguments 159
general notes 155
graph coloring register allocation 170
inlining 173
inlining under IPA 174
instruction scheduling 170
levels 171, 175
loop statements 161
OPTIMIZE 169
pointers 159
progression 171
referencing bit fields 162
straightening 169
strength reduction 170
value numbering 169
variables 158

OPTIMIZE
optimizing 169

option_override 164

P
packaging products

++MOD method 185
++PROGRAM method 186
final testing 186
for changes during servicing 185

PDF documents vii
pointer assignments

under LP64 16
pointers

64-bit 16
optimization 159

portability
between ILP32 and LP64 20
from ILP32 to LP64 6
ILP32–to-LP64 issues 7
INFO 6
long and int 12
WARN64 7

pragmas
disjoint 163
execution_frequency 163
export 163
inline 163
isolated_call 163
leaves 164
noinline 164
option_override 164
reachable 164
strings 164
unroll 164
variable

NORENT 23
RENT 23

PREFETCH compiler option 181

R
reachable pragma 164
reentrancy

constructed 23
limitations 24
natural 23

register
allocation 170
variables 159

RENT compiler option 23
RESTRICT compiler option 181
ROCONST compiler option

controlling external static 24
ROSTRING compiler option

controlling writable strings 24

S
sending to IBM

reader comments viii
shared programs 23
shortcut keys 187
SMP/E

packaging considerations 185
sprintf

Index 225

sprintf (continued)
64-bit 20

sscanf() library function
character to integer conversions 167

static variables 159
straightening 169
strcat() library function 167
strength reduction 170
STRICT compiler option 181
STRICT_INDUCTION compiler option 181
strings

comparisons 167, 168
pragma 164
processing 167

strlen library function 167
structure alignment

64-bit 8
structure comparison 167
structures

ILP32 to LP64 alignment problems 18
rule of alignment 8

T
technical support viii
tolower() macro 167
toupper() macro 167
TUNE compiler option 172
typographical conventions vii

U
ulimit command

MEMLIMIT system parameter 8
UNROLL compiler option 181
unroll pragma 164
unsuffixed numbers

ILP32 to LP64 migrations 19
user interface

ISPF 187
TSO/E 187

V
value numbering 169
variable pragma 164
variables

external 159
global 159
local 158
register 159
static 159

vector built-in functions
all predicates 140
any predicates 146
arithmetic 54
compare 72
compare ranges 80
copy until zero 106
find any element 90
gather and scatter 98
generate mask 105
header file 46

vector built-in functions (continued)
load and store 107
logical 111
merge 116
operators 152
pack and unpack 118
replicate 123
rotate and shift 126
rounding and conversion 133
summary 46
test 138
vec_abs 54
vec_add_u128 54
vec_addc 54
vec_addc_u128 55
vec_adde_u128 55
vec_addec_u128 55
vec_all_eq 140
vec_all_ge 141
vec_all_gt 141
vec_all_le 142
vec_all_lt 143
vec_all_nan 143
vec_all_ne 143
vec_all_nge 144
vec_all_ngt 144
vec_all_nle 145
vec_all_nlt 145
vec_all_numeric 145
vec_andc 111
vec_any_eq 146
vec_any_ge 146
vec_any_gt 147
vec_any_le 148
vec_any_lt 148
vec_any_nan 150
vec_any_ne 149
vec_any_nge 150
vec_any_ngt 150
vec_any_nle 151
vec_any_nlt 151
vec_any_numeric 151
vec_avg 56
vec_bperm_u128 99
vec_ceil 133
vec_checksum 56
vec_cmpeq 72
vec_cmpeq_idx 73
vec_cmpeq_idx_cc 74
vec_cmpeq_or_0_idx 74
vec_cmpeq_or_0_idx_cc 74
vec_cmpge 75
vec_cmpgt 76
vec_cmple 76
vec_cmplt 77
vec_cmpne_idx 78
vec_cmpne_idx_cc 78
vec_cmpne_or_0_idx 79
vec_cmpne_or_0_idx_cc 79
vec_cmpnrg 80
vec_cmpnrg_cc 81
vec_cmpnrg_idx 82
vec_cmpnrg_idx_cc 83
vec_cmpnrg_or_0_idx 84

226 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

vector built-in functions (continued)
vec_cmpnrg_or_0_idx_cc 84
vec_cmprg 85
vec_cmprg_cc 86
vec_cmprg_idx 87
vec_cmprg_idx_cc 88
vec_cmprg_or_0_idx 89
vec_cmprg_or_0_idx_cc 90
vec_cntlz 112
vec_cnttz 112
vec_cp_until_zero 106
vec_cp_until_zero_cc 107
vec_double 133
vec_doublee 134
vec_eqv 113
vec_extend_s64 134
vec_extract 99
vec_find_any_eq 90
vec_find_any_eq_cc 91
vec_find_any_eq_idx 91
vec_find_any_eq_idx_cc 92
vec_find_any_eq_or_0_idx 93
vec_find_any_eq_or_0_idx_cc 94
vec_find_any_ne 94
vec_find_any_ne_cc 95
vec_find_any_ne_idx 96
vec_find_any_ne_idx_cc 96
vec_find_any_ne_or_0_idx 97
vec_find_any_ne_or_0_idx_cc 98
vec_floate 134
vec_floor 135
vec_fp_test_data_class 138
vec_gather_element 100
vec_genmask 105
vec_genmasks_16 105
vec_genmasks_32 106
vec_genmasks_64 106
vec_genmasks_8 105
vec_gfmsum 56
vec_gfmsum_128 57
vec_gfmsum_accum 57
vec_gfmsum_accum_128 57
vec_insert 100
vec_insert_and_zero 101
vec_load_bndry 107
vec_load_len 108
vec_load_len_r 108
vec_load_pair 109
vec_madd 58
vec_max 58
vec_meadd 59
vec_mergeh 116
vec_mergel 117
vec_mhadd 60
vec_min 60
vec_mladd 61
vec_moadd 63
vec_msub 64
vec_msum_u128 64
vec_mule 65
vec_mulh 66
vec_mulo 67
vec_nabs 67
vec_nand 114

vector built-in functions (continued)
vec_nmadd 68
vec_nmsub 68
vec_nor 114
vec_orc 115
vec_pack 118
vec_packs 119
vec_packs_cc 120
vec_packsu 120
vec_packsu_cc 121
vec_perm 101
vec_popcnt 116
vec_promote 102
vec_rint 135
vec_rl 126
vec_rl_mask 126
vec_rli 127
vec_round 136
vec_roundc 136
vec_roundm 136
vec_roundp 137
vec_roundz 137
vec_scatter_element 103
vec_sel 103
vec_signed 137
vec_slb 127
vec_sld 128
vec_sldw 129
vec_sll 129
vec_splat 123
vec_splat_s16 124
vec_splat_s32 124
vec_splat_s64 124
vec_splat_s8 123
vec_splat_u16 124
vec_splat_u32 125
vec_splat_u64 125
vec_splat_u8 124
vec_splats 125
vec_sqrt 68
vec_srab 130
vec_sral 131
vec_srb 131
vec_srl 132
vec_store_len 109
vec_store_len_r 109
vec_sub_u128 69
vec_subc 69
vec_subc_u128 69
vec_sube_u128 70
vec_subec_u128 70
vec_sum_u128 70
vec_sum2 71
vec_sum4 71
vec_test_mask 139
vec_trunc 137
vec_unpackh 121
vec_unpackl 122
vec_unsigned 138
vec_xl 110
vec_xst 110

VECTOR compiler option 181
vector operators

__alignof__ operator 33

Index 227

vector operators (continued)
addition operator + 37
address operator & 33
assignment operator = 36
bitwise AND operator & 43
bitwise exclusive OR operator ^ 43
bitwise inclusive OR operator | 44
bitwise left shift operator << 38
bitwise right shift operator >> 39
division operator / 36
equality operator == 42
inequality operator != 42
multiplication operator * 36
relational greater than operator > 40
relational greater than or equal to operator >= 41
relational less than operator < 40
relational less than or equal to operator <= 41
remainder operator % 37
sizeof operator 34
subscripting operator [] 45
subtraction operator - 38
typeof operator 34
unary operators ++ -- + - ~ 33
vec_step operator 34

vector programming support
built-in functions 45
language extensions

binary expressions 35
cast expressions 45
compound literal expressions 45
initialization of vectors 32
pointers 33
runtime library functions 45
typedef definitions 32
unary expressions 33
vector literals 29

macro 27
options 27
vector data types 27

W
WARN64 compiler option

identifying portability problems 7
writable static

in reentrant programs 23

Z
z/OS Basic Skills Knowledge Center vii
z/OS UNIX System Services

ulimit command 8

228 IBM Enterprise Metal C for z/OS, V3.1: Optimization and Programming Guide

IBM®

Product Number: 5655-MCE

SC27-9402-00

	Contents
	About this document
	Where to find more information
	z/OS Basic Skills in IBM Knowledge Center

	Technical support
	How to send your comments to IBM
	If you have a technical problem

	Part 1. Coding: Advanced Topics
	Chapter 1. z/OS 64-bit environment
	Differences between the ILP32 and LP64 environments
	ILP32 and LP64 addressing capabilities
	ILP32 and LP64 data models and data type sizes

	Advantages and disadvantages of the LP64 environment
	LP64 application performance and program size
	LP64 restrictions

	Migrating applications from ILP32 to LP64
	When to migrate applications to LP64
	Checklist for ILP32-to-LP64 pre-migration activities
	Checklist for ILP32-to-LP64 post-migration activities

	Using compiler diagnostics to ensure portability of code
	Using the INFO option to ensure that numbers are suffixed
	Using the WARN64 option to identify potential portability problems

	ILP32-to-LP64 portability issues
	IPA(LINK) option and exploitation of 64-bit virtual memory
	Potential changes in structure size and alignment
	z/OS basic rule of alignment
	Examples of structure alignment differences under ILP32 and LP64

	Data type assignment differences under ILP32 and LP64
	Pointer declarations when 32-bit and 64-bit applications share header files
	Potential pointer corruption
	Potential loss of data in constant expressions
	Data alignment problems when structures are shared
	Portability issues with unsuffixed numbers
	Using a LONG_MAX macro in a sprintf subroutine

	Programming for portability between ILP32 and LP64
	Using header files to provide type definitions
	Using suffixes and explicit types to prevent unexpected behavior
	Defining pad members to avoid data alignment problems
	Using prototypes to avoid debugging problems
	Using a conditional compiler directive for preprocessor macro selection

	Chapter 2. Reentrancy in Enterprise Metal C for z/OS
	Natural or constructed reentrancy
	Limitations of constructed reentrancy for C programs

	Controlling external static in C programs
	Controlling writable strings

	Chapter 3. Using vector programming support
	Options
	Macro
	Vector data types
	Language extensions
	Vector literals
	Initialization of vectors
	typedef definitions for vector types
	Pointers
	Unary expressions
	Unary operators ++ -- + - ~
	Address operator &
	The __alignof__ operator
	The sizeof operator
	The typeof operator
	The vec_step operator

	Binary expressions
	Assignment operator =
	Multiplication operator *
	Division operator /
	Remainder operator %
	Addition operator +
	Subtraction operator -
	Bitwise left shift operator <<
	Bitwise right shift operator >>
	Relational less than operator <
	Relational greater than operator >
	Relational less than or equal to operator <=
	Relational greater than or equal to operator >=
	Equality operator ==
	Inequality operator !=
	Bitwise AND operator &
	Bitwise exclusive OR operator ^
	Bitwise inclusive OR operator |
	Vector subscripting operator []

	Cast expressions
	Compound literal expressions
	Other extensions for vector types

	Vector built-in functions
	Header file
	Summary of vector built-in functions
	Arithmetic
	vec_abs: Vector Absolute Value
	vec_add_u128: Vector Add unsigned 128-bits
	vec_addc: Vector Add Carryout
	vec_addc_u128: Vector Add Compute Carryout unsigned 128-bits
	vec_adde_u128: Vector Add With Carry unsigned 128-bits
	vec_addec_u128: Vector Add With Carry Compute Carry unsigned 128-bits
	vec_avg: Vector Average
	vec_checksum: Vector Checksum
	vec_gfmsum: Vector Galois Field Multiply Sum
	vec_gfmsum_128: Vector Galois Field Multiply Sum 128-bits
	vec_gfmsum_accum: Vector Galois Field Multiply Sum and Accumulate
	vec_gfmsum_accum_128: Vector Galois Field Multiply Sum and Accumulate 128-bits
	vec_madd: Vector Multiply Add
	vec_max: Vector Maximum
	vec_meadd: Vector Multiply and Add Even
	vec_mhadd: Vector Multiply and Add High
	vec_min: Vector Minimum
	vec_mladd: Vector Multiply and Add Low
	vec_moadd: Vector Multiply and Add Odd
	vec_msub: Vector Multiply Subtract
	vec_msum_u128: Vector Multiply Sum Logical
	vec_mule: Vector Multiply Even
	vec_mulh: Vector Multiply High
	vec_mulo: Vector Multiply Odd
	vec_nabs: Vector Negative Absolute
	vec_nmadd: Vector Negative Multiply Add
	vec_nmsub: Vector Negative Multiply Subtract
	vec_sqrt: Vector Square Root
	vec_sub_u128: Vector Subtract unsigned 128-bits
	vec_subc: Vector Subtract Carryout
	vec_subc_u128: Vector Subtract Carryout unsigned 128-bits
	vec_sube_u128: Vector Subtract with Carryout
	vec_subec_u128: Vector Subtract with Carryout, Carryout
	vec_sum_u128: Vector Sum Across Quadword
	vec_sum2: Vector Sum Across Doubleword
	vec_sum4: Vector Sum Across Word

	Compare
	vec_cmpeq: Vector Compare Equal
	vec_cmpeq_idx: Vector Compare Equal Index
	vec_cmpeq_idx_cc: Vector Compare Equal Index with Condition Code
	vec_cmpeq_or_0_idx: Vector Compare Equal or Zero Index
	vec_cmpeq_or_0_idx_cc: Vector Compare Equal or Zero Index with Condition Code
	vec_cmpge: Vector Compare Greater Than or Equal
	vec_cmpgt: Vector Compare Greater Than
	vec_cmple: Vector Compare Less Than or Equal
	vec_cmplt: Vector Compare Less Than
	vec_cmpne_idx: Vector Compare Not Equal Index
	vec_cmpne_idx_cc: Vector Compare Not Equal Index with Condition Code
	vec_cmpne_or_0_idx: Vector Compare Not Equal or Zero Index
	vec_cmpne_or_0_idx_cc: Vector Compare Not Equal or Zero Index with Condition Code

	Compare Ranges
	vec_cmpnrg: Vector Compare Not in Ranges
	vec_cmpnrg_cc: Vector Compare Not in Ranges with Condition Code
	vec_cmpnrg_idx: Vector Compare Not in Ranges Index
	vec_cmpnrg_idx_cc: Vector Compare Not in Ranges Index with Condition Code
	vec_cmpnrg_or_0_idx: Vector Compare Not in Ranges or Zero Index
	vec_cmpnrg_or_0_idx_cc: Vector Compare Not in Ranges or Zero Index with Condition Code
	vec_cmprg: Vector Compare Ranges
	vec_cmprg_cc: Vector Compare Ranges with Condition Code
	vec_cmprg_idx: Vector Compare Ranges Index
	vec_cmprg_idx_cc: Vector Compare Ranges Index with Condition Code
	vec_cmprg_or_0_idx: Vector Compare Ranges or Zero Index
	vec_cmprg_or_0_idx_cc: Vector Compare Ranges or Zero Index with Condition Code

	Find Any Element
	vec_find_any_eq: Vector Find Any Element Equal
	vec_find_any_eq_cc: Vector Find Any Element Equal with Condition Code
	vec_find_any_eq_idx: Vector Find Any Element Equal Index
	vec_find_any_eq_idx_cc: Vector Find Any Element Equal Index with Condition Code
	vec_find_any_eq_or_0_idx: Vector Find Any Element Equal or Zero Index
	vec_find_any_eq_or_0_idx_cc: Vector Find Any Element Equal or Zero Index with Condition Code
	vec_find_any_ne: Vector Find Any Element Not Equal
	vec_find_any_ne_cc: Vector Find Any Element Not Equal with Condition Code
	vec_find_any_ne_idx: Vector Find Any Element Not Equal Index
	vec_find_any_ne_idx_cc: Vector Find Any Element Not Equal Index with Condition Code
	vec_find_any_ne_or_0_idx: Vector Find Any Element Not Equal or Zero Index
	vec_find_any_ne_or_0_idx_cc: Vector Find Any Element Not Equal or Zero Index with Condition Code

	Gather and Scatter
	vec_bperm_u128: Vector Bit Permute
	vec_extract: Vector Extract
	vec_gather_element: Vector Gather Element
	vec_insert: Vector Insert
	vec_insert_and_zero: Vector Insert and Zero
	vec_perm: Vector Permute
	vec_promote: Vector Promote
	vec_scatter_element: Vector Scatter Element
	vec_sel: Vector Select

	Generate Mask
	vec_genmask: Vector Generate Byte Mask
	vec_genmasks_8: Vector Generate Mask (Byte)
	vec_genmasks_16: Vector Generate Mask (Halfword)
	vec_genmasks_32: Vector Generate Mask (Word)
	vec_genmasks_64: Vector Generate Mask (Doubleword)

	Copy until Zero
	vec_cp_until_zero: Vector Copy Until Zero
	vec_cp_until_zero_cc: Vector Copy Until Zero

	Load and Store
	vec_load_bndry: Vector Load to Block Boundary
	vec_load_len: Vector Load with Length
	vec_load_len_r: Vector Load Rightmost with Length
	vec_load_pair: Vector Load Pair
	vec_store_len: Vector Store with Length
	vec_store_len_r: Vector Store Rightmost with Length
	vec_xl: Vector Load
	vec_xst: Vector Store

	Logical
	vec_andc: Vector AND With Complement
	vec_cntlz: Vector Count Leading Zeros
	vec_cnttz: Vector Count Trailing Zeros
	vec_eqv: Vector XNOR
	vec_nand: Vector NAND
	vec_nor: Vector NOR
	vec_orc: Vector OR with Complement
	vec_popcnt: Vector Population Count

	Merge
	vec_mergeh: Vector Merge High
	vec_mergel: Vector Merge Low

	Pack and Unpack
	vec_pack: Vector Pack
	vec_packs: Vector Pack Saturate
	vec_packs_cc: Vector Pack Saturate Condition Code
	vec_packsu: Vector Pack Saturated Unsigned
	vec_packsu_cc: Vector Pack Saturated Unsigned Condition Code
	vec_unpackh: Vector Unpack High Element
	vec_unpackl: Vector Unpack Low Element

	Replicate
	vec_splat: Vector Splat
	vec_splat_s8: Vector Splat Signed Byte
	vec_splat_s16: Vector Splat Signed Halfword
	vec_splat_s32: Vector Splat Signed Word
	vec_splat_s64: Vector Splat Signed Doubleword
	vec_splat_u8: Vector Splat Unsigned Byte
	vec_splat_u16: Vector Splat Unsigned Halfword
	vec_splat_u32: Vector Splat Unsigned Word
	vec_splat_u64: Vector Splat Unsigned Doubleword
	vec_splats: Vector Splats

	Rotate and Shift
	vec_rl: Vector Element Rotate Left
	vec_rl_mask: Vector Element Rotate and Insert Under Mask
	vec_rli: Vector Element Rotate Left Immediate
	vec_slb: Vector Shift Left by Byte
	vec_sld: Vector Shift Left Double by Byte
	vec_sldw: Vector Shift Left Double by Word
	vec_sll: Vector Shift Left
	vec_srab: Vector Shift Right Arithmetic by Byte
	vec_sral: Vector Shift Right Arithmetic
	vec_srb: Vector Shift Right by Byte
	vec_srl: Vector Shift Right

	Rounding and Conversion
	vec_ceil: Vector Ceiling
	vec_double: Vector Convert from long long to double
	vec_doublee: Vector Convert from float (even elements) to double
	vec_extend_s64: Vector Sign Extend to Doubleword
	vec_floate: Vector Convert from double to float (even elements)
	vec_floor: Vector Floor
	vec_rint: Vector Round to Integer
	vec_round: Vector Round to Nearest
	vec_roundc: Vector Round to Current
	vec_roundm: Vector Round toward Negative Infinity
	vec_roundp: Vector Round toward Positive Infinity
	vec_roundz: Vector Round toward Zero
	vec_signed: Vector Convert double to signed long long
	vec_trunc: Vector Truncate
	vec_unsigned: Vector Convert double to unsigned long long

	Test
	vec_fp_test_data_class: Vector Floating-Point Test Data Class
	vec_test_mask: Vector Test under Mask

	All Predicates
	vec_all_eq: All Elements Equal
	vec_all_ge: All Elements Greater Than or Equal
	vec_all_gt: All Elements Greater Than
	vec_all_le: All Elements Less Than or Equal
	vec_all_lt: All Elements Less Than
	vec_all_nan: All Elements Not a Number
	vec_all_ne: All Elements Not Equal
	vec_all_nge: All Elements Not Greater Than or Equal
	vec_all_ngt: All Elements Not Greater Than
	vec_all_nle: All Elements Not Less Than or Equal
	vec_all_nlt: All Elements Not Less Than
	vec_all_numeric: All Elements Numeric

	Any Predicates
	vec_any_eq: Any Element Equal
	vec_any_ge: Any Element Greater Than or Equal
	vec_any_gt: Any Element Greater Than
	vec_any_le: Any Element Less Than or Equal
	vec_any_lt: Any Element Less Than
	vec_any_ne: Any Element Not Equal
	vec_any_nan: Any Element Not a Number
	vec_any_nge: Any Element Not Greater Than or Equal
	vec_any_ngt: Any Element Not Greater Than
	vec_any_nle: Any Element Not Less Than or Equal
	vec_any_nlt: Any Element Not Less Than
	vec_any_numeric: Any Element Numeric

	Defining vector built-in functions from operators

	Part 2. Performance optimization
	Chapter 4. Improving program performance
	Writing code for performance
	ANSI aliasing rules
	Using ANSI aliasing rules
	Using variables
	Passing function arguments
	Coding expressions
	Coding conversions
	Arithmetical considerations
	Using loops and control constructs
	Choosing a data type
	Using #pragmas

	Chapter 5. Using built-in functions to improve performance
	__builtin_expect
	Platform-specific functions
	Examples

	Chapter 6. Improving performance with compiler options
	Using the OPTIMIZE option
	Optimizations performed by the compiler
	Aggressive optimizations with OPTIMIZE(3)
	Optimization option levels

	Processor optimization capabilities with ARCH and TUNE options
	Inlining
	Selectively marking code to inline
	Automatically choosing functions to inline
	Modifying automatic inlining choices
	Overriding inlining defaults
	Inlining under IPA

	Using the HOT option
	Using the IPA option
	Types of procedural analysis
	Compiler processing flow

	Additional options that affect performance
	AGGRCOPY
	ANSIALIAS
	ASSERT(RESTRICT)
	COMPACT
	COMPRESS
	FLOAT
	HGPR
	LIBANSI
	PREFETCH
	RESTRICT
	ROCONST
	ROSTRING
	STRICT
	STRICT_INDUCTION
	UNROLL
	VECTOR

	Chapter 7. Balancing compilation time and application performance
	General tips
	Programmer tips
	System programmer tips

	Appendix A. Packaging considerations
	Compiler options
	Libraries
	Linking

	Appendix B. Accessibility
	Accessibility features
	Consult assistive technologies
	Keyboard navigation of the user interface
	Dotted decimal syntax diagrams

	Glossary
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

	Notices
	Programming interface information
	Trademarks
	Standards

	Index
	Special Characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Z

